Proving and Using Pseudorandomness
证明和使用伪随机性
基本信息
- 批准号:1639631
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Notions of pseudorandomness and quasirandomness have been developed and investigated in several areas of theoretical computer science, combinatorics and number theory (including complexity theory, cryptography, graph theory, additive combinatorics and analytic number theory) to answer such questions such as the following. What does it mean for a fixed object to be "random-like"? Is it possible to turn existence proofs that use the probabilistic method into explicit constructions? Is it possible to simulate randomized algorithms deterministically? When can heuristic arguments that treat the primes as a random set of integers be turned into rigorous proofs? In the setting of additive combinatorics, what is the minimal set of tests that primes have to satisfy in order to guarantee that they contain arithmetic progressions (or other structures)?At a very high level, the appeal of such notions is that one can easily prove that certain properties are true for random objects, using probabilistic methods, and then transfer such properties to pseudorandom objects, provided that the pseudorandomness ?fools? the probabilistic techniques. A theme of this workshop will be how to leverage weak pseudorandomness properties, fooling simple classes of tests, in order to derive stronger pseudorandomness properties related to more complex tests. The workshop will explore unconditional constructions of pseudorandom objects at the frontier of progress, such as pseudorandom generators for small-space computations, small-depth circuits with modular gates, threshold circuits, and formulas in disjunctive normal form.The workshop will bring together complexity theorists, combinatorial mathematicians, number theorists, probabilists and algorithm designers interested in the foundations and uses of pseudo-randomness. It will be open to all potential participants, and the workshop findings (including videorecordings of presentations) will be distributed to the public for comment and engagement. The organizers will encourage students to attend the workshop, and will actively recruit scientists from a diversity of backgrounds to contribute to a wide range of applications.
伪随机性和拟随机性的概念已经在理论计算机科学、组合学和数论(包括复杂性理论、密码学、图论、加法组合学和解析数论)的若干领域中得到发展和研究,以回答诸如以下的问题。一个固定的对象是“类随机”的是什么意思?有没有可能将使用概率方法的存在性证明转化为显式构造?有可能确定性地模拟随机算法吗?什么时候可以将素数视为随机整数集的启发式论点转化为严格的证明?在加法组合学中,素数必须满足的最小测试集是什么,以保证它们包含算术级数(或其他结构)?在一个非常高的水平上,这种概念的吸引力是,人们可以很容易地证明,某些属性是真实的随机对象,使用概率的方法,然后将这些属性转移到伪随机对象,只要伪随机性?傻瓜?概率技术。本次研讨会的主题将是如何利用弱伪随机属性,愚弄简单的测试类,以获得更强的伪随机属性相关的更复杂的测试。研讨会将探讨伪随机对象的无条件构造,如用于小空间计算的伪随机发生器、具有模块门的小深度电路、阈值电路和析取范式公式。研讨会将汇集对伪随机的基础和用途感兴趣的复杂性理论家、组合数学家、数论家、概率学家和算法设计师。研讨会将向所有潜在的与会者开放,研讨会的结果(包括发言的录像)将分发给公众,供其发表意见和参与。组织者将鼓励学生参加研讨会,并将积极招募来自不同背景的科学家,为广泛的应用做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Karp其他文献
Candida albicans Purulent Pericarditis Treated Successfully without Surgical Drainage
- DOI:
10.1378/chest.102.3.953 - 发表时间:
1992-09-01 - 期刊:
- 影响因子:
- 作者:
Richard Karp;Raymond Meldahl;Robert McCabe - 通讯作者:
Robert McCabe
Richard Karp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Karp', 18)}}的其他基金
Learning, Algorithm Design and Beyond Worst-Case Analysis
学习、算法设计和超越最坏情况分析
- 批准号:
1639629 - 财政年份:2016
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Computational Challenges in Machine Learning
机器学习中的计算挑战
- 批准号:
1639630 - 财政年份:2016
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Optimization and Decision-Making Under Uncertainty
不确定性下的优化和决策
- 批准号:
1639628 - 财政年份:2016
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Connections Between Algorithm Design and Complexity Theory
算法设计与复杂性理论之间的联系
- 批准号:
1540284 - 财政年份:2015
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Approximate Counting, Markov Chains and Phase Transitions
近似计数、马尔可夫链和相变
- 批准号:
1540286 - 财政年份:2015
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 2万 - 项目类别:
Studentship
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 2万 - 项目类别:
Studentship
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
- 批准号:
2593424 - 财政年份:2025
- 资助金额:
$ 2万 - 项目类别:
Studentship
Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
- 批准号:
MR/Y011686/1 - 财政年份:2025
- 资助金额:
$ 2万 - 项目类别:
Fellowship
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
CAREER: Investigating Biogeographic Hypotheses and Drivers of Diversification in Neotropical Harvestmen (Opiliones: Laniatores) Using Ultraconserved Elements
职业:利用超保守元素研究新热带收获者(Opiliones:Laniatores)多样化的生物地理学假设和驱动因素
- 批准号:
2337605 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
CAREER: Development of New Gas-Releasing Molecules Using a Thiol Carrier
职业:利用硫醇载体开发新型气体释放分子
- 批准号:
2338835 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant