Learning, Algorithm Design and Beyond Worst-Case Analysis
学习、算法设计和超越最坏情况分析
基本信息
- 批准号:1639629
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In computational complexity theory, the performance of an algorithm is traditionally defined by its worst-case resource usage as the size of the input tends to infinity. In practice, this asymptotic worst-case measure may be inappropriate for several reasons: the worst-case performance may occur only for contrived instances that never occur in practice; the instances occurring in practice may have special structural features; the average-case performance of the algorithm may be much better than its worst case; or heuristic algorithms may empirically be observed to perform well. The workshop will focus on these non-worst-case phenomena. It will explore probabilistic models of the input distribution, structured classes of inputs such as planted models, and empirical measurement of performance. The goal will be to provide tools best suited for the practical evaluation of algorithms.The workshop will enhance communication among the mathematics, computer science, statistics and operations research communities. It will be open to all potential participants, and the workshop findings (including video recordings of presentations) will be distributed to the public for comment and engagement. The organizers will encourage students to attend the workshop, and will actively recruit scientists from a diversity of backgrounds to contribute to a wide range of applications.
在计算复杂性理论中,当输入的大小趋于无穷大时,算法的性能通常由其最坏情况下的资源使用情况来定义。在实践中,这种渐近最坏情况度量可能不合适,原因如下:最坏情况性能可能只发生在从未在实践中发生的人为实例中;在实践中发生的实例可能具有特殊的结构特征;算法的平均情况性能可能比最坏情况要好得多;或者启发式算法可能会被经验观察到表现良好。研讨会将集中讨论这些非最坏情况的现象。它将探索输入分布的概率模型,输入的结构化类别,如种植模型,以及绩效的经验测量。我们的目标是提供最适合算法实际评估的工具。研讨会将加强数学、计算机科学、统计学和运筹学研究团体之间的交流。它将向所有潜在的参与者开放,研讨会的结果(包括演讲的视频记录)将分发给公众,以征求意见和参与。组织者将鼓励学生参加研讨会,并将积极招募来自不同背景的科学家,为广泛的应用做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Karp其他文献
Candida albicans Purulent Pericarditis Treated Successfully without Surgical Drainage
- DOI:
10.1378/chest.102.3.953 - 发表时间:
1992-09-01 - 期刊:
- 影响因子:
- 作者:
Richard Karp;Raymond Meldahl;Robert McCabe - 通讯作者:
Robert McCabe
Richard Karp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Karp', 18)}}的其他基金
Computational Challenges in Machine Learning
机器学习中的计算挑战
- 批准号:
1639630 - 财政年份:2016
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Optimization and Decision-Making Under Uncertainty
不确定性下的优化和决策
- 批准号:
1639628 - 财政年份:2016
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Connections Between Algorithm Design and Complexity Theory
算法设计与复杂性理论之间的联系
- 批准号:
1540284 - 财政年份:2015
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Approximate Counting, Markov Chains and Phase Transitions
近似计数、马尔可夫链和相变
- 批准号:
1540286 - 财政年份:2015
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Time-Evolving Graph Learning with Algorithm-System Co-Design
算法系统协同设计的时间演化图学习
- 批准号:
23KJ1786 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Real-Time Federated Learning at the Wireless Edge via Algorithm-Hardware Co-Design
通过算法-硬件协同设计在无线边缘进行实时联合学习
- 批准号:
EP/X019160/1 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Research Grant
Collaborative Research: PPoSS: Planning: Model-Driven Compiler Optimization and Algorithm-Architecture Co-Design for Scalable Machine Learning
协作研究:PPoSS:规划:用于可扩展机器学习的模型驱动编译器优化和算法架构协同设计
- 批准号:
2119677 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Model-Driven Compiler Optimization and Algorithm-Architecture Co-Design for Scalable Machine Learning
协作研究:PPoSS:规划:用于可扩展机器学习的模型驱动编译器优化和算法架构协同设计
- 批准号:
2118737 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
- 批准号:
2130125 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
I-Corps: Algorithm-Hardware Co-Design for Large-Scale Machine Learning
I-Corps:大规模机器学习的算法硬件协同设计
- 批准号:
2137080 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
- 批准号:
2203239 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
- 批准号:
1954549 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant