EarthCube Data Infrastructure: Intelligent Databases and Analysis Tools for Geospace Data
EarthCube数据基础设施:地理空间数据的智能数据库和分析工具
基本信息
- 批准号:1639683
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solar activity and variability are among the key factors determining the state of the Earth?s atmosphere, global trends and climate changes. Explosive events in the form of high-energy radiation and mass ejections cause geomagnetic storms in the ionosphere and magnetosphere, affecting biological systems, disrupting power grids, and communications. For understanding and predicting the complex and evolving Earth system, it is critical to investigate its coupling to the space environment and to solar variability. To facilitate interdisciplinary research on solar influences, PI and the team will develop a unique data environment that will integrate new and archived satellite and ground-based observational data. The integrated data environment will allow researchers to efficiently access solar and geospace data and use them for studying fundamental problems of solar activity and variability and their impacts on Earth systems, as well as for developing new predictive capabilities. The innovative interdisciplinary approach for building an intelligent integrated database, developed in collaboration between heliophysicists and computer scientists, will contribute to knowledge discovery in the EarthCube and associated fields. The proposed activities will facilitate the transfer of innovative data analysis, data visualization, and data-driven modeling techniques to in-class teaching at the undergraduate and graduate levels and to other fields of research that may benefit from a similar framework.The primary goal is to develop tools for data access and analysis that can be easily used by the Geoscience community for studying and modeling various components of the coupled Earth system. The project will develop innovative tools to extract and analyze the available observational and modeling data in order to enable new physics-based and machine-learning approaches for understanding and predicting solar activity and its influence on the geospace and Earth systems. The geospace data are abundant: several terabytes of solar and space observations are obtained every day. Finding the relevant information from numerous spacecraft and ground-based data archives and using it is a paramount, and currently a difficult task. The scope of the project is to develop and evaluate data integration tools to meet common data access and discovery needs for two types of Heliophysics data: 1) long-term synoptic activity and variability, and 2) extreme geoeffective solar events. The project will integrate existing data resources, such as the Heliophysics Knowledge Database (HEK), Solar Dynamics Observatory Joint Science Operations Center (SDO JSOC), Virtual Solar Observatory (VSO), Heliophysics Integrated Observatory (HELIO), and others. The methodology consists in the development of a data integration infrastructure and access methods capable of 1) automatic search and identification of image patterns and event data records produced by space and ground-based observatories, 2) automatic association of parallel multi-wavelength/multi-instrument database entries with unique pattern or event identifiers, 3) automatic retrieval of such data records and pipeline processing for the purpose of annotating each pattern or event according to a predefined set of physical parameters inferable from complimentary data sources, and 4) generation of a pattern or catalog and associated user-friendly graphical interface tools that are capable to provide fast search, quick preview, and automatic data retrieval capabilities
太阳活动和变化是决定地球状态的关键因素之一。美国大气,全球趋势和气候变化。高能辐射和物质抛射形式的爆炸事件会在电离层和磁层引起地磁风暴,影响生物系统,扰乱电网和通信。研究地球系统与空间环境和太阳变率的耦合是理解和预测地球系统复杂演化的关键。为了促进关于太阳影响的跨学科研究,PI和小组将开发一个独特的数据环境,将整合新的和存档的卫星和地面观测数据。综合数据环境将允许研究人员有效地访问太阳和地球空间数据,并将它们用于研究太阳活动和变化及其对地球系统的影响的基本问题,以及开发新的预测能力。由太阳物理学家和计算机科学家合作开发的用于构建智能综合数据库的创新跨学科方法,将有助于地球立方体和相关领域的知识发现。拟议的活动将有助于将创新的数据分析、数据可视化和数据驱动的建模技术转移到本科和研究生的课堂教学中,并转移到可能受益于类似框架的其他研究领域。主要目标是开发用于数据访问和分析的工具,这些工具可以被地球科学社区轻松地用于研究和建模耦合地球系统的各种组件。该项目将开发创新工具,提取和分析现有的观测和建模数据,以便采用新的基于物理和机器学习的方法来理解和预测太阳活动及其对地球空间和地球系统的影响。地球空间数据丰富:每天获得数tb的太阳和空间观测数据。从众多航天器和地面数据档案中寻找相关信息并加以利用是一项至关重要的任务,目前也是一项艰巨的任务。该项目的范围是开发和评估数据集成工具,以满足两类太阳物理数据的通用数据访问和发现需求:1)长期天气活动和变率,以及2)极端地球有效太阳事件。该项目将整合现有的数据资源,如太阳物理知识数据库(HEK)、太阳动力学观测台联合科学操作中心(SDO JSOC)、虚拟太阳观测台(VSO)、太阳物理综合观测台(HELIO)等。该方法包括开发数据集成基础设施和访问方法,能够1)自动搜索和识别由空间和地面天文台产生的图像模式和事件数据记录,2)自动关联并行多波长/多仪器数据库条目与唯一模式或事件标识符。3)自动检索这些数据记录和管道处理,以便根据可从补充数据源推断的一组预定义的物理参数对每个模式或事件进行注释;4)生成模式或目录以及相关的用户友好图形界面工具,这些工具能够提供快速搜索、快速预览和自动数据检索功能
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Statistical Properties of Soft X-Ray Emission of Solar Flares
- DOI:10.3847/1538-4357/ab06c3
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:V. Sadykov;A. Kosovichev;I. Kitiashvili;A. Frolov
- 通讯作者:V. Sadykov;A. Kosovichev;I. Kitiashvili;A. Frolov
Dressing the Coronal Magnetic Extrapolations of Active Regions with a Parameterized Thermal Structure
- DOI:10.3847/1538-4357/aaa4bf
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:G. Nita;N. Viall;J. Klimchuk;M. Loukitcheva;D. Gary;A. Kuznetsov;G. Fleishman
- 通讯作者:G. Nita;N. Viall;J. Klimchuk;M. Loukitcheva;D. Gary;A. Kuznetsov;G. Fleishman
Intelligent Databases and Machine-Learning Analysis Tools for Heliophysics
太阳物理学智能数据库和机器学习分析工具
- DOI:10.6084/m9.figshare.14848713.v1
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kosovichev, A.;Sadykov, V.;Nita, G.;Oria, V.;Illarionov, E.;Tlatov, A.
- 通讯作者:Tlatov, A.
Revealing the Evolution of Non-thermal Electrons in Solar Flares Using 3D Modeling
使用 3D 建模揭示太阳耀斑中非热电子的演化
- DOI:10.3847/1538-4357/aabae9
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Fleishman, Gregory D.;Nita, Gelu M.;Kuroda, Natsuha;Jia, Sabina;Tong, Kevin;Wen, Richard R.;Zhizhuo, Zhou
- 通讯作者:Zhizhuo, Zhou
Statistical Study of Chromospheric Evaporation in Impulsive Phase of Solar Flares
- DOI:10.3847/1538-4357/aaf6b0
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:V. Sadykov;A. Kosovichev;I. Sharykin;G. Kerr
- 通讯作者:V. Sadykov;A. Kosovichev;I. Sharykin;G. Kerr
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kosovichev其他文献
A Community Data Set for Comparing Automated Coronal Hole Detection Schemes
用于比较自动冕洞检测方案的社区数据集
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:8.7
- 作者:
Martin.A. Reiss;Karin Muglach;E. Mason;Emma E. Davies;S. Chakraborty;V. Delouille;C. Downs;T. Garton;Jeremy A. Grajeda;Amr Hamada;S. Heinemann;S. Hofmeister;E. Illarionov;R. Jarolim;L. Krista;C. Lowder;E. Verwichte;C. Arge;L. Boucheron;C. Foullon;M. Kirk;Alexander Kosovichev;Andrew Leisner;C. Möstl;James Turtle;Astrid M. Veronig - 通讯作者:
Astrid M. Veronig
Characteristics of Sunquake Events Observed in Solar Cycle 24
第24太阳周期观测到的日震事件特征
- DOI:
10.5194/egusphere-egu21-1461 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Alexander Kosovichev;Ivan Sharykin - 通讯作者:
Ivan Sharykin
The Random Hivemind: An Ensemble Deep Learning Application to the Solar Energetic Particle Prediction Problem
随机 Hivemind:集成深度学习在太阳高能粒子预测问题中的应用
- DOI:
10.1016/j.asr.2024.04.044 - 发表时间:
2023 - 期刊:
- 影响因子:2.6
- 作者:
Patrick M. O’Keefe;V. Sadykov;Alexander Kosovichev;I. Kitiashvili;Vincent Oria;G. Nita;Fraila Francis;Chun;Paul Kosovich;Aatiya Ali;Russell D. Marroquin - 通讯作者:
Russell D. Marroquin
Alexander Kosovichev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Kosovichev', 18)}}的其他基金
Collaborative Research: Energy Release and Transport in Impulsive Phase of Solar Flares
合作研究:太阳耀斑脉冲阶段的能量释放和传输
- 批准号:
1916509 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: EarthCube Data Capabilities: A data-driven modeling infrastructure to support research and education in volcanology, geochemistry and petrology
协作研究:EarthCube 数据功能:数据驱动的建模基础设施,支持火山学、地球化学和岩石学的研究和教育
- 批准号:
2026904 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Data Capabilities: Rapid response to existing community demand through next generation web infrastructure to integrate Argo and GO-SHIP
协作研究:EarthCube 数据能力:通过下一代网络基础设施集成 Argo 和 GO-SHIP,快速响应现有社区需求
- 批准号:
2026776 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Data Capabilities: A data-driven modeling infrastructure to support research and education in volcanology, geochemistry and petrology
协作研究:EarthCube 数据功能:数据驱动的建模基础设施,支持火山学、地球化学和岩石学的研究和教育
- 批准号:
2026916 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Data Capabilities: Rapid response to existing community demand through next generation web infrastructure to integrate Argo and GO-SHIP
协作研究:EarthCube 数据能力:通过下一代网络基础设施集成 Argo 和 GO-SHIP,快速响应现有社区需求
- 批准号:
2026954 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Data Capabilities: A data-driven modeling infrastructure to support research and education in volcanology, geochemistry and petrology
协作研究:EarthCube 数据功能:数据驱动的建模基础设施,支持火山学、地球化学和岩石学的研究和教育
- 批准号:
2026819 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EarthCube Data Infrastructure: Collaborative Proposal: A unified experimental-natural digital data system for analysis of rock microstructures
EarthCube数据基础设施:协作提案:用于分析岩石微观结构的统一实验自然数字数据系统
- 批准号:
1639658 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EarthCube Data Infrastructure: Collaborative Proposal: A unified experimental-natural digital data system for analysis of rock microstructure
EarthCube数据基础设施:协作提案:用于分析岩石微观结构的统一实验自然数字数据系统
- 批准号:
1639710 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EarthCube Data Infrastructure: Collaborative Proposal: A unified experimental-natural digital data system for analysis of rock microstructures
EarthCube数据基础设施:协作提案:用于分析岩石微观结构的统一实验自然数字数据系统
- 批准号:
1639749 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EarthCube Data Infrastructure: Collaborative Proposal: A unified experimental-natural digital data system for analysis of rock microstructures
EarthCube数据基础设施:协作提案:用于分析岩石微观结构的统一实验自然数字数据系统
- 批准号:
1639641 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EarthCube Data Infrastructure: Collaborative Proposal: A unified experimental-natural digital data system for analysis of rock microstructures
EarthCube数据基础设施:协作提案:用于分析岩石微观结构的统一实验自然数字数据系统
- 批准号:
1639748 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant