Collaborative Research: Energy Release and Transport in Impulsive Phase of Solar Flares
合作研究:太阳耀斑脉冲阶段的能量释放和传输
基本信息
- 批准号:1916509
- 负责人:
- 金额:$ 45.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As we continue to spread our technological reach into space, we are beginning to grasp how dangerous and inhospitable it can be. An often overlooked danger comes from the source of energy in our solar system: the Sun. The seemingly static and abiding facet of our cosmic neighborhood provides a constant and reliable stream of heat and light, but this can change in an instant and without warning. Coronal Mass Ejections (CMEs) are violent eruptions that see plasma structures hundreds of times the size of the Earth reach out of the sun and blast into space. This large concentration of unstable magnetic energy on the surface of the Sun can often be characterized by bright flashes of light, X-rays, ultraviolet and gamma rays commonly known as Solar Flares. These events are an almost daily occurrence during solar activity maxima and are a source of energetic particles and radiation which can be very harmful to space missions, communications and GPS satellites, and especially to manned space operations such as the ISS. In rare cases, these high energy phenomena may even threaten our safety on Earth: a massive solar event was felt around the world in 1859 as highly energetic solar particles rained down on our planet, creating dancing lights in the atmosphere; an aurora that stretched from the North Pole all the way to New York City. A key aspect of our Nation's continued foray into space along with well thought out plans of defense lie in the scientific characterization and understanding of such powerful and seemingly unpredictable phenomena. Safety in space is one of our most important priorities, and the key to venturing outside of our planet lies in the understanding of the energetic heart of our solar system. This three-year project addresses the fundamental problem of how the energy is produced, released and transported on the Sun during most extreme flare events. The study leads to better understanding of mechanisms of solar energetic particles and their impacts, as well as to development of advanced predictive capabilities. The project involves students at NJIT and University of Colorado who will answer outstanding questions about the fundamental physics of solar flare energy production and release. The student's results will be presented at professional conferences and summer programs, as well as also at the University student events, thus, promoting STEM education, as well as environmental and space studies.Recent observational and modeling results showed that the standard model of solar flares, which consider that the primary energy release in the impulsive phase is in the form of high-energy electron beams, are not capable to explain the observed impacts in the solar atmosphere and the flare dynamics. Thus, it is necessary to consider other mechanisms of the energy release and transport, such as proton beams and mixed electron-proton (neutral) beams. Using currently available computational models and multi-instrument data, the team performs a comprehensive investigation and derives properties of the flaring plasma and accelerated particles during the impulsive phase. The project specific tasks are: (i) perform quantitative multi-instrument analysis of the flare emission, spectroscopic and magnetic field data; (ii) model the dynamic response of the solar atmosphere to various energy release channels (including electron, proton and neutral beams of different energy fluxes, and heat flux) by performing radiative hydrodynamics simulations; (iii) using the flare dynamical models and radiation codes, analyze the emission and spectral characteristics for the various energy release channels; and, (iv) by comparing the model characteristics with the data analysis results deduce properties of flare energy release in the impulsive phase. The research and EPO agenda of this project supports the Strategic Goals of the AGS Division in discovery, learning, diversity, and interdisciplinary research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着我们的技术不断深入太空,我们开始意识到太空是多么危险和荒凉。一个经常被忽视的危险来自我们太阳系的能量来源:太阳。我们的宇宙邻居看似静止而持久的一面提供了持续可靠的热和光流,但这可能在瞬间毫无征兆地发生变化。日冕物质抛射(CMEs)是一种剧烈的喷发,它可以看到数百倍于地球大小的等离子体结构从太阳伸出并喷射到太空中。这种在太阳表面大量聚集的不稳定的磁能通常以明亮的光、x射线、紫外线和伽马射线的闪光为特征,这些射线通常被称为太阳耀斑。这些事件几乎每天都在太阳活动高峰期间发生,是高能粒子和辐射的来源,对空间任务、通信和GPS卫星,特别是对国际空间站等载人空间操作非常有害。在极少数情况下,这些高能量现象甚至可能威胁到我们在地球上的安全:1859年,全世界都能感受到一次大规模的太阳事件,当时高能太阳粒子像雨点一样落在我们的星球上,在大气层中产生了舞动的光;极光从北极一直延伸到纽约市。我们国家继续进军太空以及深思熟虑的防御计划的一个关键方面在于科学地描述和理解这种强大而看似不可预测的现象。太空安全是我们最重要的优先事项之一,在我们的星球之外冒险的关键在于了解我们太阳系的能量中心。这个为期三年的项目解决了一个基本问题,即在最极端的耀斑事件中,太阳上的能量是如何产生、释放和传输的。这项研究有助于更好地理解太阳高能粒子及其影响的机制,并有助于开发先进的预测能力。该项目涉及新泽西理工大学和科罗拉多大学的学生,他们将回答有关太阳耀斑能量产生和释放的基本物理问题。学生的成果将在专业会议和夏季项目以及大学学生活动中展示,从而促进STEM教育以及环境和空间研究。最近的观测和模拟结果表明,太阳耀斑的标准模型考虑了在脉冲阶段的一次能量释放是高能电子束的形式,不能解释观测到的太阳大气中的影响和耀斑动力学。因此,有必要考虑其他的能量释放和传输机制,如质子束和混合电子-质子(中性)束。利用目前可用的计算模型和多仪器数据,该团队进行了全面的调查,并得出了在脉冲阶段燃烧等离子体和加速粒子的特性。该项目的具体任务是:(i)对耀斑发射、光谱和磁场数据进行定量多仪器分析;(ii)通过进行辐射流体动力学模拟,模拟太阳大气对各种能量释放通道(包括不同能量通量和热通量的电子、质子和中性光束)的动态响应;(3)利用耀斑动力学模型和辐射代码,分析了各种能量释放通道的发射特性和光谱特性;(4)将模型特性与数据分析结果进行对比,推导出耀斑脉冲阶段能量释放特性。该项目的研究和EPO议程支持AGS部门在发现、学习、多样性和跨学科研究方面的战略目标。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis and Modeling of High-frequency Emission and Deep Seismic Sources of Sunquakes
日震的高频发射和深震源分析与建模
- DOI:10.3847/2041-8213/ac8f92
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Stefan, John T.;Kosovichev, Alexander G.
- 通讯作者:Kosovichev, Alexander G.
Sunquakes of Solar Cycle 24
太阳活动周期 24 的日震
- DOI:10.3847/1538-4357/ab88d1
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sharykin, Ivan N.;Kosovichev, Alexander G.
- 通讯作者:Kosovichev, Alexander G.
Characteristics of Sunquake Events Observed in Solar Cycle 24
第24太阳周期观测到的日震事件特征
- DOI:10.5194/egusphere-egu21-1461
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Alexander Kosovichev;Ivan Sharykin
- 通讯作者:Ivan Sharykin
Estimation of Key Sunquake Parameters through Hydrodynamic Modeling and Cross-correlation Analysis
通过水动力模型和互相关分析估计关键日震参数
- DOI:10.3847/1538-4357/ab88ae
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Stefan, John T.;Kosovichev, Alexander G.
- 通讯作者:Kosovichev, Alexander G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kosovichev其他文献
A Community Data Set for Comparing Automated Coronal Hole Detection Schemes
用于比较自动冕洞检测方案的社区数据集
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:8.7
- 作者:
Martin.A. Reiss;Karin Muglach;E. Mason;Emma E. Davies;S. Chakraborty;V. Delouille;C. Downs;T. Garton;Jeremy A. Grajeda;Amr Hamada;S. Heinemann;S. Hofmeister;E. Illarionov;R. Jarolim;L. Krista;C. Lowder;E. Verwichte;C. Arge;L. Boucheron;C. Foullon;M. Kirk;Alexander Kosovichev;Andrew Leisner;C. Möstl;James Turtle;Astrid M. Veronig - 通讯作者:
Astrid M. Veronig
The Random Hivemind: An Ensemble Deep Learning Application to the Solar Energetic Particle Prediction Problem
随机 Hivemind:集成深度学习在太阳高能粒子预测问题中的应用
- DOI:
10.1016/j.asr.2024.04.044 - 发表时间:
2023 - 期刊:
- 影响因子:2.6
- 作者:
Patrick M. O’Keefe;V. Sadykov;Alexander Kosovichev;I. Kitiashvili;Vincent Oria;G. Nita;Fraila Francis;Chun;Paul Kosovich;Aatiya Ali;Russell D. Marroquin - 通讯作者:
Russell D. Marroquin
Alexander Kosovichev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Kosovichev', 18)}}的其他基金
EarthCube Data Infrastructure: Intelligent Databases and Analysis Tools for Geospace Data
EarthCube数据基础设施:地理空间数据的智能数据库和分析工具
- 批准号:
1639683 - 财政年份:2017
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341994 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344722 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344723 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341995 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339061 - 财政年份:2024
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant
Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks
合作研究:主动配电网络中灵活能源的学习辅助估计和管理
- 批准号:
2313768 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Standard Grant














{{item.name}}会员




