Real-world Networks and Random Graph Models

现实世界的网络和随机图模型

基本信息

项目摘要

Modeling the topology of large networks is a fundamental problem that has attracted considerable attention in the last decades. Networks provide an abstract way of describing relationships and interactions between elements of complex and heterogeneous systems. Examples include technological networks, like the World Wide Web or the Internet, biological networks, like the human brain, and social networks, which describe various kinds of interactions between individuals. An accurate mathematical model can have enormous impact on several research areas. From the viewpoint of computer science, an obvious benefit is that it could enable us to design more efficient algorithms that exploit the underlying topology. Moreover, the process of modeling may suggest and reveal novel types of qualitative network features, which become patterns to look for in datasets. Finally, an appropriate model will allow us to generate artificial instances, which resemble realistic instances to a high degree, for simulation purposes. Unfortunately, from today’s point of view, a significant proportion of the current literature is devoted only to experimental studies of properties of real-world networks, and there has been only little rigorous mathematical work. The aim of this project is twofold. First, by studying the typical structural properties of random networks generated by two carefully selected models, I want to investigate rigorously the fundamental underlying mechanisms that determine the formation of real-world networks. As a second step, I want to use the acquired knowledge to develop algorithms for many important optimization problems, like routing and information dissemination
大型网络的拓扑建模是过去几十年来引起广泛关注的一个基本问题。网络提供了一种描述复杂异构系统元素之间的关系和交互的抽象方法。例子包括技术网络,如万维网或互联网,生物网络,如人脑,以及社交网络,它们描述了个体之间的各种交互。准确的数学模型可以对多个研究领域产生巨大影响。从计算机科学的角度来看,一个明显的好处是它可以使我们能够设计更有效的算法来利用底层拓扑。此外,建模过程可能会建议并揭示新颖的定性网络特征类型,这些特征将成为在数据集中寻找的模式。最后,适当的模型将允许我们生成高度类似于现实实例的人工实例,以用于模拟目的。不幸的是,从今天的角度来看,当前文献的很大一部分仅致力于现实世界网络特性的实验研究,而严格的数学工作却很少。该项目的目标是双重的。首先,通过研究由两个精心选择的模型生成的随机网络的典型结构特性,我想严格研究决定现实世界网络形成的基本机制。第二步,我想利用所获得的知识来开发许多重要优化问题的算法,例如路由和信息传播

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algorithms and Computation
算法与计算
  • DOI:
    10.1007/978-3-642-35261-4_71
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deng X
  • 通讯作者:
    Deng X
Randomized Rumour Spreading: The Effect of the Network Topology
随机谣言传播:网络拓扑的影响
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Konstantinos Panagiotou其他文献

Professor Dr. Konstantinos Panagiotou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Konstantinos Panagiotou', 18)}}的其他基金

Gibbs Partitions with Many Components
具有多个组件的吉布斯分区
  • 批准号:
    411724275
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
  • 批准号:
    81942001
  • 批准年份:
    2019
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
相对论中的薄球壳模型及其在宇宙论中的应用
  • 批准号:
    10605006
  • 批准年份:
    2006
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
利用结构特性分析和控制动态布尔网络
  • 批准号:
    60574067
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目
探讨复杂动力网络的同步能力和鲁棒性
  • 批准号:
    60304017
  • 批准年份:
    2003
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Event networks and the neural representations that support real-world memory
支持现实世界记忆的事件网络和神经表征
  • 批准号:
    10717508
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Effect of disorder on polymers and on real-world networks
无序对聚合物和现实世界网络的影响
  • 批准号:
    23K12984
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tackling real-world time series using dynamic neural networks
使用动态神经网络处理现实世界的时间序列
  • 批准号:
    23K16949
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Real-world application of agent based model created from BCMP queueing networks and machine learning
基于 BCMP 排队网络和机器学习创建的基于代理的模型的实际应用
  • 批准号:
    21K11774
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NCS-FO: How real-world interaction networks shape and are shaped by neural information processing
NCS-FO:现实世界的交互网络如何塑造以及神经信息处理如何塑造
  • 批准号:
    1835239
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Resilience Analysis for Core Decomposition in Real-World Networks
III:小:协作研究:现实世界网络中核心分解的弹性分析
  • 批准号:
    1910063
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Real-World Networks: Modeling and Analysis of Signed Networks with Positive and Negative Links
职业:现实世界网络:具有正向和负向链接的签名网络的建模和分析
  • 批准号:
    1845081
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: Resilience Analysis for Core Decomposition in Real-World Networks
III:小:协作研究:现实世界网络中核心分解的弹性分析
  • 批准号:
    1908048
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Training Deep Networks for Real-world Computer Vision Scenarios with Rendered Data
使用渲染数据训练真实计算机视觉场景的深度网络
  • 批准号:
    401269959
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
SpecEES: Collaborative Research: Stochastic Geometry Meets Channel Measurements: Comprehensive Modeling, Analysis,Fundamental Design-tradeoffs in Real-world Massive-MIMO Networks
SpecEES:协作研究:随机几何满足信道测量:现实世界大规模 MIMO 网络中的综合建模、分析、基本设计权衡
  • 批准号:
    1731694
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了