CAREER: Real-World Networks: Modeling and Analysis of Signed Networks with Positive and Negative Links
职业:现实世界网络:具有正向和负向链接的签名网络的建模和分析
基本信息
- 批准号:1845081
- 负责人:
- 金额:$ 50.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many real-world social systems, in addition to positive links, relations between people can be negative (e.g., foes, blocked and unfriended users, and distrust). These relations can be represented as networks with both positive and negative links (or signed networks). Signed networks have substantially different properties and principles from unsigned ones, which poses tremendous challenges to traditional network analysis and requires dedicated efforts. Thus a systematic and comprehensive investigation on signed networks is desired. The results of this project can have an immediate and strong impact on improving the performance of various network analytical tasks, enabling the analysis of networks with negative links, and thus positively impacting the overall value of various data/information areas. The developed new algorithms for signed network analysis will have impact on various disciplines, including computer science, social science, health informatics, and education as signed networks are very common in these domains. This project will play an integral part to attract undergraduate and K-12 students especially underrepresented groups to careers in engineering, to inform them about crucial but highly unavailable network analysis technologies and to encourage and train computer science and engineering graduate and undergraduate students to address research issues in network analysis.The added complexity of negative links in signed networks has manifested unprecedented research challenges and opportunities. This project will comprehensively investigate the primary directions of signed networks from modeling and measuring to mining. Each direction will dramatically extend the frontier through not only developing innovative solutions, but also studying original problems. The core intellectual merit lies in the fact that the project offers the first systematic investigation on this emerging research area and the designed advanced methodologies and novel tasks will deepen our understanding on how negative links can be synergized to advance the field of network analysis; improve our knowledge of real-world networks; and contribute to real-world applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多现实世界的社会系统中,除了积极的联系之外,人与人之间的关系也可能是消极的(例如,敌人、被屏蔽和未加好友的用户以及不信任)。这些关系可以表示为具有正链接和负链接的网络(或带符号网络)。 有符号网络与无符号网络具有本质上不同的性质和原理,这对传统的网络分析提出了巨大的挑战,需要专门的工作。因此,需要对签名网络进行系统而全面的研究。这一项目的成果可以对改善各种网络分析任务的性能产生直接和强烈的影响,从而能够分析具有负面联系的网络,从而对各种数据/信息领域的整体价值产生积极影响。符号网络分析的新算法将对各个学科产生影响,包括计算机科学,社会科学,健康信息学和教育,因为符号网络在这些领域非常常见。该项目将发挥不可或缺的一部分,以吸引本科生和K-12学生,特别是代表性不足的群体在工程职业,让他们了解关键但高度不可用的网络分析技术,并鼓励和培训计算机科学与工程研究生和本科生解决网络分析中的研究问题。和机会。该项目将全面研究签名网络从建模和测量到挖掘的主要方向。 每个方向不仅通过开发创新解决方案,还通过研究原创问题,极大地扩展了前沿领域。 该项目的核心智力价值在于,该项目首次对这一新兴研究领域进行了系统研究,设计的先进方法和新颖任务将加深我们对如何协同负面联系以推进网络分析领域的理解;提高我们对现实世界网络的认识;该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiliang Tang其他文献
DeepRobust: a Platform for Adversarial Attacks and Defenses
DeepRobust:对抗性攻击和防御的平台
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yaxin Li;Wei Jin;Han Xu;Jiliang Tang - 通讯作者:
Jiliang Tang
Graph Trend Networks for Recommendations
用于推荐的图趋势网络
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Wenqi Fan;Xiaorui Liu;Wei Jin;Xiangyu Zhao;Jiliang Tang;Qing Li - 通讯作者:
Qing Li
Social Media Data Integration for Community Detection
用于社区检测的社交媒体数据集成
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jiliang Tang;Xufei Wang;Huan Liu - 通讯作者:
Huan Liu
A Robust Semantics-based Watermark for Large Language Model against Paraphrasing
一种基于语义的鲁棒抗释义大型语言模型水印
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jie Ren;Han Xu;Yiding Liu;Yingqian Cui;Shuaiqiang Wang;Dawei Yin;Jiliang Tang - 通讯作者:
Jiliang Tang
Aligning large language models and geometric deep models for protein representation
将大型语言模型和几何深度学习模型用于蛋白质表征的整合(或对齐,需根据具体语境确定更准确的意思)
- DOI:
10.1016/j.patter.2025.101227 - 发表时间:
2025-05-09 - 期刊:
- 影响因子:7.400
- 作者:
Dong Shu;Bingbing Duan;Kai Guo;Kaixiong Zhou;Jiliang Tang;Mengnan Du - 通讯作者:
Mengnan Du
Jiliang Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiliang Tang', 18)}}的其他基金
III:Medium:Computation and Communication Efficient Distributed Learning
III:中:计算与通信高效分布式学习
- 批准号:
2212032 - 财政年份:2022
- 资助金额:
$ 50.77万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2212144 - 财政年份:2022
- 资助金额:
$ 50.77万 - 项目类别:
Standard Grant
Travel: SDM2022 Student Travel Grant
旅行:SDM2022 学生旅行补助金
- 批准号:
2213055 - 财政年份:2022
- 资助金额:
$ 50.77万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
- 批准号:
1955285 - 财政年份:2020
- 资助金额:
$ 50.77万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Effective Labeled Data Generation via Generative Adversarial Learning
III:小:协作研究:通过生成对抗性学习有效生成标记数据
- 批准号:
1907704 - 财政年份:2019
- 资助金额:
$ 50.77万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A General Feature Learning Framework for Dynamic Attributed Networks
III:小:协作研究:动态属性网络的通用特征学习框架
- 批准号:
1715940 - 财政年份:2017
- 资助金额:
$ 50.77万 - 项目类别:
Standard Grant
Student Activities Support at 2017 SIAM International Conference on Data Mining (SDM)
2017 SIAM 国际数据挖掘会议 (SDM) 学生活动支持
- 批准号:
1719275 - 财政年份:2017
- 资助金额:
$ 50.77万 - 项目类别:
Standard Grant
III: Small: Unsupervised Feature Selection in the Era of Big Data
III:小:大数据时代的无监督特征选择
- 批准号:
1714741 - 财政年份:2017
- 资助金额:
$ 50.77万 - 项目类别:
Standard Grant
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 50.77万 - 项目类别:
Continuing Grant
CAREER: Towards Real-world Reinforcement Learning
职业:走向现实世界的强化学习
- 批准号:
2339395 - 财政年份:2024
- 资助金额:
$ 50.77万 - 项目类别:
Continuing Grant
CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
- 批准号:
2339198 - 财政年份:2024
- 资助金额:
$ 50.77万 - 项目类别:
Continuing Grant
CAREER: Integrating brain-behavior evolution with real-world science impacts through neuroscience of working dogs
职业:通过工作犬的神经科学将大脑行为进化与现实世界的科学影响相结合
- 批准号:
2238071 - 财政年份:2023
- 资助金额:
$ 50.77万 - 项目类别:
Continuing Grant
CAREER: Safe and Efficient Robot Learning from Demonstration in the Real World
职业:安全高效的机器人从现实世界的演示中学习
- 批准号:
2323384 - 财政年份:2023
- 资助金额:
$ 50.77万 - 项目类别:
Continuing Grant
CAREER: Active Learning in the Real World
职业:现实世界中的主动学习
- 批准号:
2143424 - 财政年份:2022
- 资助金额:
$ 50.77万 - 项目类别:
Continuing Grant
CAREER: Intelligent Manipulation in the Real World via Modularity and Abstraction
职业:通过模块化和抽象在现实世界中进行智能操作
- 批准号:
2145283 - 财政年份:2022
- 资助金额:
$ 50.77万 - 项目类别:
Continuing Grant
Prize 202209PJT - Early Career Award in Cancer: Improving Patient Outcomes among Early-Age-At-Onset Colorectal Cancer Patients Using Real-World Data
奖 202209PJT - 癌症早期职业奖:使用真实世界数据改善早期发病结直肠癌患者的患者预后
- 批准号:
477685 - 财政年份:2022
- 资助金额:
$ 50.77万 - 项目类别:
Operating Grants
Building Career Interest in Computer Science through Advanced Real-World Technology Projects
通过先进的现实世界技术项目培养对计算机科学的职业兴趣
- 批准号:
2000866 - 财政年份:2020
- 资助金额:
$ 50.77万 - 项目类别:
Standard Grant
CAREER: Using Fiction to Improve Real-World Information Systems
职业:利用小说来改进现实世界的信息系统
- 批准号:
1942591 - 财政年份:2020
- 资助金额:
$ 50.77万 - 项目类别:
Continuing Grant