Applying Statistical State Dynamics to Explain Spontaneous Shear/Buoyancy Layering in Stratified Turbulence
应用统计状态动力学解释层状湍流中的自发剪切/浮力分层
基本信息
- 批准号:1640989
- 负责人:
- 金额:$ 50.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-15 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research aims at advancing a new approach to explaining formation of small-scale horizontal structure in the shear and buoyancy fields of stratified turbulence in the atmosphere based on direct solution of the statistical state dynamics (SSD) equations. Direct solution of the SSD equations is a new approach to investigating the dynamics of turbulent flows that makes accessible to study mechanisms and phenomena in the dynamics that are inaccessible to analysis based on simulations of individual turbulent state realizations or on statistical mean quantities obtained by averaging ensembles of individual turbulent state realizations. Illustrative of such a mechanism is the cooperative instability of turbulence/mean-flow interaction that results in small scale shear and buoyancy layering in the stratified turbulence of both the atmosphere and ocean. This layering instability arises as an analytic bifurcation in the SSD of stratified turbulence while having no analytic counterpart in the dynamics of realizations, although the same layering phenomenon is seen in both SSD and realizations. In this research, SSD will be extended to obtain a theory for the spontaneous emergence of layering in the shear and buoyancy fields of stratified turbulence. The goal is to use SSD to understand the mechanism by which coherent layered structures are formed, maintained and equilibrated by interaction between the incoherent turbulence and the coherent layered structures.Intellectual Merit:The SSD method constitutes a conceptual as well as methodological advance in understanding turbulence in planetary atmospheres. By directly solving the statistical equations for the turbulent state dynamics the underlying coherent structures together with their associated incoherent eddy fields are obtained explicitly allowing e.g. analytic prediction of shear and buoyancy layer formation and of the sensitivity of the layer structure and its associated turbulent fluxes to changes in system parameters. Direct solution of the SSD equations reveals that shear/buoyancy layering and the associated turbulence is supported as a novel dynamical state in which coherent layered structures interact in a synergistic manner with small-scale turbulence to produce emergent layering instabilities leading to finite amplitude coherent equilibria in the shear/buoyancy/turbulence fields. The SSD approach allows exploration of these new cooperative dynamical regimes by providing analytic and numerical methods for obtaining turbulent statistical equilibria directly from the SSD of the turbulence.Broader Impacts:SSD allows analytical exploration of mechanisms by which coherent components of turbulence interact with incoherent components synergistically to produce emergent dynamical phenomena. The concepts and methods being developed are widely applicable to deepening understanding of turbulence in a wide variety of physical systems including mechanisms underlying formation and maintenance of coherent structures and regulation of turbulent transport in the atmosphere at all scales from the planetary to the boundary layer. SSD is broadly applicable to the study of a new class of emergent instabilities which are essentially related to mean flow/turbulence interaction but unrelated to laminar flow instability. Among other applications, this instability concept provides an explanation for the phenomenon of abrupt reorganization of atmospheric turbulence as a function of parameter change. Using SSD insight can be gained into the role of eddy fluxes in determining the climate response to boundary forcing (such as SST variation during ENSO events). This capability is important because the direct response to e.g. boundary condition changes can be small compared to the indirect effect brought about by subsequent changes induced in eddy statistics. SSD constitutes a general theory of turbulence in shear flow and among the broader impacts of this work are its application to turbulent phenomena in other physical contexts including plasma turbulence, the turbulence of wall-bounded shear flows and MHD turbulence. The broader impacts of this work also include support of a graduate student in atmospheric dynamics.
本研究旨在提出一种基于直接求解统计状态动力学(SSD)方程的新方法来解释大气分层湍流切变场和浮力场中小尺度水平结构的形成。直接求解SSD方程是研究湍流动力学的一种新方法,它使得研究动力学中的机制和现象变得容易,这些机制和现象无法基于单个湍流状态实现的模拟或通过平均单个湍流状态实现集合获得的统计平均值来进行分析。这种机制的例证是湍流/平均流相互作用的合作不稳定,导致大气和海洋的分层湍流中的小尺度切变和浮力分层。这种分层不稳定性是分层湍流的SSD中的一种解析分叉,而在实现的动力学中没有解析对应的分叉,尽管在SSD和实现中都可以看到相同的分层现象。在这项研究中,SSD将被扩展以获得分层湍流的剪切场和浮力场中的分层自发出现的理论。其目标是使用SSD来理解通过非相干湍流和相干层状结构之间的相互作用来形成、维持和平衡相干层状结构的机制。智力优点:SSD方法在理解行星大气中的湍流方面构成了概念和方法上的进步。通过直接求解湍流状态动力学的统计方程,显式地获得了基本的相干结构及其相关的非相干涡流场,从而可以解析地预测切变层和浮力层的形成,以及层结构及其相关的湍流通量对系统参数变化的敏感性。SSD方程的直接解表明,剪切/浮力分层和相关的湍流是一种新的动力学状态,在这种状态下,相干层状结构与小尺度湍流以协同方式相互作用,产生紧急分层不稳定性,导致剪切/浮力/湍流场中的有限振幅相干平衡。SSD方法可以通过提供直接从湍流的SSD获得湍流统计平衡的解析和数值方法来探索这些新的合作动力机制。广泛的影响:SSD允许对湍流的相干分量与非相干分量协同作用以产生紧急动力学现象的机制进行分析探索。正在开发的概念和方法广泛适用于加深对各种物理系统中的湍流的了解,包括形成和维持相干结构的基本机制以及从行星到边界层的所有尺度上对大气中湍流输送的调节。SSD可广泛应用于研究一类与平均流/湍流相互作用有关但与层流不稳定性无关的新的涌现不稳定性。在其他应用中,这个不稳定性概念解释了大气湍流作为参数变化的函数而突然重组的现象。使用SSD可以深入了解涡旋通量在确定气候对边界强迫的响应(如ENSO事件期间SST变化)中的作用。这种能力很重要,因为与涡旋统计中随后引起的变化所带来的间接影响相比,对例如边界条件变化的直接反应可能很小。SSD构成了剪切流中湍流的一般理论,这项工作的更广泛的影响包括它对其他物理环境中的湍流现象的应用,包括等离子体湍流、壁面剪切流的湍流和MHD湍流。这项工作的更广泛影响还包括对大气动力学研究生的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Statistical state dynamics analysis of buoyancy layer formation via the Phillips mechanism in two-dimensional stratified turbulence
二维分层湍流中浮力层形成的菲利普斯机制统计状态动力学分析
- DOI:10.1017/jfm.2019.72
- 发表时间:2019
- 期刊:
- 影响因子:3.7
- 作者:Fitzgerald, Joseph G.;Farrell, Brian F.
- 通讯作者:Farrell, Brian F.
Statistical state dynamics of vertically sheared horizontal flows in two-dimensional stratified turbulence
二维分层湍流中垂直剪切水平流的统计状态动力学
- DOI:10.1017/jfm.2018.560
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:Fitzgerald, Joseph G.;Farrell, Brian F.
- 通讯作者:Farrell, Brian F.
Vertically Sheared Horizontal Flow-Forming Instability in Stratified Turbulence: Analytical Linear Stability Analysis of Statistical State Dynamics Equilibria
分层湍流中垂直剪切水平流动的不稳定性:统计状态动力学平衡的解析线性稳定性分析
- DOI:10.1175/jas-d-18-0075.1
- 发表时间:2018
- 期刊:
- 影响因子:3.1
- 作者:Fitzgerald, Joseph G.;Farrell, Brian F.
- 通讯作者:Farrell, Brian F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Farrell其他文献
The effect of body weight on interfragmentary fracture strain in plate fixation of distal femur fractures: A finite element analysis
- DOI:
10.1016/j.otsr.2024.103868 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Ishan D. Shah;Adam M. Schlauch;Lisa Phan;Jiho Han;Oluwatodimu Richard Raji M. Eng;Brian Farrell - 通讯作者:
Brian Farrell
Brian Farrell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Farrell', 18)}}的其他基金
DISSERTATION RESEARCH: The phylogenetic consequences of mutualism and antagonism in the coevolution of palm flower weevils.
论文研究:棕榈花象鼻虫共同进化中互利共生和拮抗的系统发育后果。
- 批准号:
1601356 - 财政年份:2016
- 资助金额:
$ 50.67万 - 项目类别:
Standard Grant
Digitization TCN: Collaborative Research: Fossil Insect Collaborative: A Deep-Time Approach to Studying Diversification and Response to Environmental Change
数字化 TCN:协作研究:化石昆虫协作:研究多样化和对环境变化的响应的深度方法
- 批准号:
1304992 - 财政年份:2013
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
INSPIRE: Statistical State Dynamics of Turbulent Systems
INSPIRE:湍流系统的统计状态动力学
- 批准号:
1246929 - 财政年份:2012
- 资助金额:
$ 50.67万 - 项目类别:
Standard Grant
New Methods in Storm Track Dynamics Theory
风暴轨迹动力学理论的新方法
- 批准号:
0736022 - 财政年份:2007
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
AToL: COLLABORATIVE RESEARCH: Assembling the Beetle Tree of Life
AToL:合作研究:组装甲虫生命之树
- 批准号:
0531768 - 财政年份:2005
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
New Methods in Storm Track Dynamics Theory
风暴轨迹动力学理论的新方法
- 批准号:
0432463 - 财政年份:2004
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
DISSERTATION RESEARCH: Phylogenesis of Hostshifts and Specialization in Neodiprion Sawflies
论文研究:新二叶蜂宿主转移和特化的系统发育
- 批准号:
0308815 - 财政年份:2003
- 资助金额:
$ 50.67万 - 项目类别:
Standard Grant
Adding High Resolution Images to the Online Database of Insect Primary Types in the Museum of Comparative Zoology
将高分辨率图像添加到比较动物学博物馆的昆虫主要类型在线数据库中
- 批准号:
0237505 - 财政年份:2003
- 资助金额:
$ 50.67万 - 项目类别:
Standard Grant
New Methods In Storm Track Dynamics Theory
风暴轨迹动力学理论的新方法
- 批准号:
0123389 - 财政年份:2001
- 资助金额:
$ 50.67万 - 项目类别:
Continuing Grant
Dissertation Research: Phylogenetics and Resource Specialization in the Seed Beetle Genus Stator (Coleoptera: Chrysomelidae: Bruchinae)
论文研究:种子甲虫属定子(鞘翅目:叶甲科:Bruchinae)的系统发育和资源专业化
- 批准号:
0073330 - 财政年份:2000
- 资助金额:
$ 50.67万 - 项目类别:
Standard Grant
相似海外基金
Statistical Analysis of State-Dependent Government Spending Multipliers
依赖国家的政府支出乘数的统计分析
- 批准号:
DP210101440 - 财政年份:2022
- 资助金额:
$ 50.67万 - 项目类别:
Discovery Projects
Time-Series Statistical Applications to Mammalian Cerebral Physiology for Understanding Network Relations and Building State-Space Projections
哺乳动物大脑生理学的时间序列统计应用,用于理解网络关系和构建状态空间投影
- 批准号:
576386-2022 - 财政年份:2022
- 资助金额:
$ 50.67万 - 项目类别:
Alliance Grants
Statistical modelling for complex longitudinal multi-state data
复杂纵向多状态数据的统计建模
- 批准号:
RGPIN-2018-04906 - 财政年份:2022
- 资助金额:
$ 50.67万 - 项目类别:
Discovery Grants Program - Individual
Statistical modelling for complex longitudinal multi-state data
复杂纵向多状态数据的统计建模
- 批准号:
RGPIN-2018-04906 - 财政年份:2021
- 资助金额:
$ 50.67万 - 项目类别:
Discovery Grants Program - Individual
Presumption of statistical mechanical state distribution of 3D protein structure in solution states by crystallization
通过结晶推定溶液状态下 3D 蛋白质结构的统计机械状态分布
- 批准号:
21K04908 - 财政年份:2021
- 资助金额:
$ 50.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical modelling for complex longitudinal multi-state data
复杂纵向多状态数据的统计建模
- 批准号:
RGPIN-2018-04906 - 财政年份:2020
- 资助金额:
$ 50.67万 - 项目类别:
Discovery Grants Program - Individual
Statistical modelling for complex longitudinal multi-state data
复杂纵向多状态数据的统计建模
- 批准号:
RGPIN-2018-04906 - 财政年份:2019
- 资助金额:
$ 50.67万 - 项目类别:
Discovery Grants Program - Individual
Analysis of the current state of use of statistical methods
统计方法使用现状分析
- 批准号:
18K10244 - 财政年份:2018
- 资助金额:
$ 50.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical modelling for complex longitudinal multi-state data
复杂纵向多状态数据的统计建模
- 批准号:
RGPIN-2018-04906 - 财政年份:2018
- 资助金额:
$ 50.67万 - 项目类别:
Discovery Grants Program - Individual
Multi-state, multi-time, multi-level analysis of health-related demographic events: Statistical aspects and applications
健康相关人口事件的多状态、多时间、多层次分析:统计方面和应用
- 批准号:
386913674 - 财政年份:2017
- 资助金额:
$ 50.67万 - 项目类别:
Research Grants














{{item.name}}会员




