A New Computationally Efficient Approach for Discrete Optimization in Hierarchical Decision-Making

分层决策中离散优化的一种新的高效计算方法

基本信息

  • 批准号:
    1642514
  • 负责人:
  • 金额:
    $ 15.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

Bilevel optimization is a framework to model a hierarchical decision system where two decision makers interact in a sequential way when they pursue their own objectives. It is currently applied to study and support many real decision-making problems where centralized control is not applicable, including those arising from government policy design, economics, social science, defense and security. However, it is computationally challenging to make such decisions. In particular, bilevel optimization with discrete decisions in the lower level remains computationally unsolved. This research will produce a novel and efficient algorithm paradigm to compute bilevel discrete optimization problems, including unstructured formulations and popular interdiction models. Various analytical insights and algorithm enhancements will be investigated and developed. Results will be further incorporated into publicly available and professional optimization solvers to provide decision support to users in government agencies, military forces and other societal organizations with different analytical backgrounds. Teaching and learning materials will be designed to disseminate research results. Graduate and undergraduate students will benefit through lectures and research experiences. Therefore, broad and positive impacts will be produced in the U.S. government policy making, economy, education, and defense and security areas.The solution scheme from this research will include non-traditional reformulations of bilevel mixed integer program (MIP) that yield relaxations theoretically stronger than existing ones. It will also involve a new decomposition framework that progressively explores solution space and strengthens bounds. Advanced relaxation techniques, branch-and-bound strategies and strong valid inequalities, along with integration of fast heuristics and popular optimization algorithms, will be studied, developed and evaluated. If successful, the intellectual merit of this research will include: (i) the first general, complete and empirically verified algorithmic procedure with a comprehensive analysis will become available to compute bilevel MIP problems; (ii) the solution capability will be substantially improved to solve instances from practice; (iii) integration methods with other efficient computing approaches will be developed and demonstrated to address different variants of bilevel MIP and large-scale applications; (iv) a new algorithm philosophy will enrich existing literature on optimization and algorithm design; (v) modeling and computing packages will be implemented and provided for public access and rapid prototyping.
双层优化是一个框架来模拟一个分层决策系统,其中两个决策者在追求自己的目标时以顺序的方式进行交互。它目前被应用于研究和支持许多真实的决策问题,其中集中控制是不适用的,包括那些产生于政府政策设计,经济学,社会科学,国防和安全。 然而,做出这样的决定在计算上是具有挑战性的。特别是,在较低级别的离散决策的双层优化仍然是计算上未解决的。这项研究将产生一个新的和有效的算法范式来计算双层离散优化问题,包括非结构化配方和流行的阻断模型。将研究和开发各种分析见解和算法增强。结果将进一步纳入公开和专业的优化求解器,为政府机构,军队和其他具有不同分析背景的社会组织的用户提供决策支持。将设计教学材料,以传播研究成果。研究生和本科生将通过讲座和研究经验受益。因此,广泛和积极的影响,将产生在美国政府的政策制定,经济,教育,国防和安全领域。本研究的解决方案将包括非传统的双层混合整数规划(MIP)的重新制定,产生理论上比现有的松弛。它还将涉及一个新的分解框架,逐步探索解决方案空间并加强边界。先进的松弛技术,分支定界策略和强有效的不等式,沿着快速算法和流行的优化算法的集成,将被研究,开发和评估。 如果成功的话,本研究的智力价值将包括:(i)第一个通用的,完整的和经验验证的算法程序与全面的分析将成为可用于计算双层MIP问题:(ii)解决方案的能力将大大提高,以解决来自实践的例子;(iii)将开发和演示与其他有效计算方法的集成方法,以解决两级MIP的不同变体和大规模应用; ㈣一种新的算法哲学将丰富关于最优化和算法设计的现有文献; ㈤将实施建模和计算包,供公众查阅和快速制作原型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bo Zeng其他文献

Prevalence of the 4977-bp and 4408-bp mitochondrial DNA deletions in mesenteric arteries from patients with colorectal cancer
结直肠癌患者肠系膜动脉中 4977-bp 和 4408-bp 线粒体 DNA 缺失的患病率
  • DOI:
    10.3109/19401736.2015.1079900
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gui-Lan Chen;Huan Lan;Liang Mao;Bo Zeng
  • 通讯作者:
    Bo Zeng
Decentralized Multi-Area Robust Generation Unit andTie-Line Scheduling with Variable Wind Energy
分布式多区域鲁棒发电机组及可变风能联络线调度
A Two-Stage Deception Game for Network Defense
网络防御的两阶段欺骗博弈
A Numerical Simulation for Fusion Reaction in Tokamak D-T Plasma
  • DOI:
    10.1080/15361055.2020.1850158
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Bo Zeng;Zijia Zhao;Zhong Chen;Dongmei Pan;Zhongliang Lv;Yanyun Ma
  • 通讯作者:
    Yanyun Ma
Genetic diversity of chemokine XCL1 and its receptor XCR1 in murine rodents.
小鼠啮齿动物趋化因子 XCL1 及其受体 XCR1 的遗传多样性。

Bo Zeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bo Zeng', 18)}}的其他基金

CPS: Small: Collaborative Research: Optimal Ride Service For All: Users, Service Providers and Society
CPS:小型:协作研究:为所有人提供最佳乘车服务:用户、服务提供商和社会
  • 批准号:
    1931794
  • 财政年份:
    2019
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Energy Reliability by Co-Optimization Planning for Interdependent Electricity and Natural Gas Infrastructure Systems
合作研究:通过相互依赖的电力和天然气基础设施系统的协同优化规划提高能源可靠性
  • 批准号:
    1635472
  • 财政年份:
    2017
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Standard Grant
GOALI: Design and Operations of Supply Chain for Cleaner Fuels: Models, Algorithms and Implementation for Coal-fired Power Plants
目标:清洁燃料供应链的设计和运营:燃煤电厂的模型、算法和实施
  • 批准号:
    1660543
  • 财政年份:
    2016
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Standard Grant
A New Computationally Efficient Approach for Discrete Optimization in Hierarchical Decision-Making
分层决策中离散优化的一种新的高效计算方法
  • 批准号:
    1436452
  • 财政年份:
    2014
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Standard Grant
GOALI: Design and Operations of Supply Chain for Cleaner Fuels: Models, Algorithms and Implementation for Coal-fired Power Plants
目标:清洁燃料供应链的设计和运营:燃煤电厂的模型、算法和实施
  • 批准号:
    1235135
  • 财政年份:
    2012
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Continuing Grant
Computationally Efficient Methods for Control of Epidemics on Networks
控制网络流行病的计算有效方法
  • 批准号:
    2240848
  • 财政年份:
    2023
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Standard Grant
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
  • 批准号:
    DGECR-2022-00026
  • 财政年份:
    2022
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Discovery Launch Supplement
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
  • 批准号:
    RGPIN-2022-04639
  • 财政年份:
    2022
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Discovery Grants Program - Individual
ATD: Collaborative Research: Computationally Efficient Algorithms for Detecting Anomalous Atmospheric Emissions
ATD:协作研究:用于检测异常大气排放的计算高效算法
  • 批准号:
    2341843
  • 财政年份:
    2022
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Standard Grant
A Computationally Efficient Approach to Predict Population Risk with Machine Learning
通过机器学习预测人口风险的高效计算方法
  • 批准号:
    10379613
  • 财政年份:
    2022
  • 资助金额:
    $ 15.62万
  • 项目类别:
Collaborative Research: Computationally Efficient Algorithms for Large-scale Bilevel Optimization Problems
协作研究:大规模双层优化问题的计算高效算法
  • 批准号:
    2127697
  • 财政年份:
    2021
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Standard Grant
Computationally investigating an unexplored domain for efficient hydrogen production
通过计算研究有效制氢的未探索领域
  • 批准号:
    565008-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: Computationally Efficient Algorithms for Large-scale Bilevel Optimization Problems
协作研究:大规模双层优化问题的计算高效算法
  • 批准号:
    2127696
  • 财政年份:
    2021
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Standard Grant
EAGER: IIS: Enabling Computationally Efficient Fuzzy Clustering for Distributed Big Data
EAGER:IIS:为分布式大数据启用计算高效的模糊聚类
  • 批准号:
    2140729
  • 财政年份:
    2021
  • 资助金额:
    $ 15.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了