INSPIRE: Computational Parameterization of Nucleic Acid Secondary Structure Models

INSPIRE:核酸二级结构模型的计算参数化

基本信息

  • 批准号:
    1643606
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This INSPIRE project is jointly funded by the Chemical Theory, Models, and Computational Methods program in the Division of Chemistry in the Directorate for Math and Physical Science, the Algorithmic Foundations program in the Division of Computing and Communication Foundations in the Directorate for Computer & Information Science, and the INSPIRE program in the Office of Integrative Activities. This project advances the objectives of the National Strategic Computing Initiative (NSCI), an effort aimed at sustaining and enhancing the U.S. scientific, technological, and economic leadership position in High-Performance Computing (HPC) research, development, and deployment. DNA and RNA base-pairing (A pairs with T, C pairs with G for DNA; A pairs with U, C pairs with G for RNA) play central roles in the biological circuits that operate within living organisms. This base-pairing also offers a rich design space for the new engineering disciplines of molecular programming and synthetic biology. These engineering efforts are greatly assisted by the use of computational algorithms to design and analyze the base-pairing (secondary structure) properties of DNA or RNA strands before beginning more costly and time-consuming laboratory studies. Historically, the secondary structure models underlying these calculations have been parameterized based on experiments performed piecemeal over a period of decades, making it difficult to improve the models (still incomplete after 45 years of effort) or to extend the models (to new materials and experimental conditions critical to modern applications). Departing dramatically from this experimental parameterization approach, the proposed work will establish a computational parameterization framework, in which state-of-the-art computational chemistry methods with be used - for the first time - to perform atomistic simulations on a carefully chosen suite of small model problems, enabling automated parameterization of new secondary structure models from scratch. This strategy requires a high level of inter-disciplinarity beyond the capabilities of any individual research group, demanding computational and algorithmic expertise to perform modeling at both the atomistic level and the secondary structure level, and experimental expertise to test key ensemble properties predicted from new parameter sets. This effort draws together three laboratories (Miller, Pierce, Winfree) spanning three Caltech Divisions (Biology & Biological Engineering, Chemistry & Chemical Engineering, and Engineering & Applied Science) to achieve major impact on the molecular programming, synthetic biology, and life sciences research communities by dramatically improving current secondary structure models and by creating a repeatable, improvable, extensible computational framework for generating new models long into the future. Over the coming decades, the fields empowered by these advances are poised to generate transformative molecular and cellular technologies addressing challenges to science and society ranging from neuroscience and development, to diagnosis and treatment, and from renewable energy to sustainable manufacturing. The programmable chemistry of nucleic acid base pairing is central to the circuits that orchestrate life and to the emerging engineering disciplines of molecular programming and synthetic biology. Existing secondary structure models have great utility for analyzing and designing functional DNA and RNA systems, but current equilibrium parameter sets are incomplete, apply to a limited set of experimental conditions, and are difficult to extend or improve as they are based on empirical parameters measured over the course of 45 years. Furthermore, essentially no kinetic parameters have been measured to date. Departing from this piecemeal experimental approach, the proposed work will parameterize equilibrium and kinetic secondary structure models - for the first time - using atomistic molecular simulations. State-of-the-art computational chemistry methods will be used to set up a forward compatible framework for parameter generation that is automated and repeatable, enabling researchers to rerun the parameterization suite from scratch to generate an entire parameter set for a new set of experimental conditions (salt, temperature, denaturant), for new synthetic analogs (LNA, 2?OMe-RNA), or for mixed-material interactions (DNA/RNA, RNA/2'OMe-RNA, RNA/LNA) that are crucial for modern in situ and in vivo applications. The computational framework will initially be validated via comparison to the subset of DNA and RNA parameters that have been most carefully measured in existing empirical models, followed by validation with respect to key equilibrium and kinetic results extracted from the experimental literature, or measured in the laboratory.
该INSPIRE项目由数学和物理科学理事会化学部的化学理论,模型和计算方法计划,计算机信息科学理事会计算和通信基础部的数学基础计划以及综合活动办公室的INSPIRE计划共同资助。该项目推进了国家战略计算计划(NSCI)的目标,该计划旨在维持和加强美国在高性能计算(HPC)研究、开发和部署方面的科学、技术和经济领导地位。DNA和RNA碱基配对(DNA的碱基配对是A与T配对,RNA的碱基配对是C与G配对)在生物体内的生物回路中起着核心作用。 这种碱基配对也为分子编程和合成生物学等新的工程学科提供了丰富的设计空间。在开始更昂贵和耗时的实验室研究之前,使用计算算法来设计和分析DNA或RNA链的碱基配对(二级结构)特性极大地帮助了这些工程工作。从历史上看,这些计算背后的二级结构模型已经基于几十年来零碎进行的实验进行了参数化,这使得很难改进模型(经过45年的努力仍然不完整)或扩展模型(新材料和实验条件对现代应用至关重要)。从这个实验参数化方法显着出发,拟议的工作将建立一个计算参数化框架,其中最先进的计算化学方法被用于-第一次-对精心选择的一套小模型问题进行原子模拟,使新的二级结构模型从头开始自动参数化。这种策略需要高水平的跨学科性,超出了任何单个研究小组的能力,需要计算和算法专业知识来在原子水平和二级结构水平上进行建模,以及实验专业知识来测试从新参数集预测的关键集合属性。这项工作汇集了三个实验室(米勒,皮尔斯,温弗里)跨越三个加州理工学院分部(生物生物工程,化学化学工程和工程应用科学),以实现对分子编程,合成生物学和生命科学研究社区的重大影响,通过显着改善当前的二级结构模型,并通过创建一个可重复的,可改进的,可扩展的计算框架,以产生新的模型很长一段时间到未来。在未来几十年中,这些进步所赋予的领域将产生变革性的分子和细胞技术,以应对从神经科学和发展到诊断和治疗,从可再生能源到可持续制造等科学和社会的挑战。核酸碱基配对的可编程化学是协调生命的电路以及分子编程和合成生物学等新兴工程学科的核心。现有的二级结构模型对于分析和设计功能性DNA和RNA系统具有很大的实用性,但是目前的平衡参数集是不完整的,适用于有限的实验条件,并且难以扩展或改进,因为它们是基于45年来测量的经验参数。此外,迄今为止基本上没有测量动力学参数。从这种零碎的实验方法出发,拟议的工作将参数化平衡和动力学二级结构模型-第一次-使用原子分子模拟。国家的最先进的计算化学方法将被用来建立一个向前兼容的框架参数生成,是自动化和可重复的,使研究人员从头开始的参数化套件生成一个完整的参数集为一组新的实验条件(盐,温度,变性剂),新的合成类似物(LNA,2?OMe-RNA)或混合材料相互作用(DNA/RNA、RNA/2 'OMe-RNA、RNA/LNA),这些对于现代原位和体内应用至关重要。计算框架最初将通过与现有经验模型中最仔细测量的DNA和RNA参数子集进行比较来验证,然后验证从实验文献中提取的或在实验室中测量的关键平衡和动力学结果。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inferring Parameters for an Elementary Step Model of DNA Structure Kinetics with Locally Context-Dependent Arrhenius Rates
推断具有局部上下文相关阿伦尼乌斯速率的 DNA 结构动力学基本步骤模型的参数
  • DOI:
    10.1007/978-3-319-66799-7_12
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zolaktaf, Sedigheh;Dannenberg, Frits;Rudelis, Xander;Condon, Anne;Schaeffer, Joseph M;Thachuk, Chris;Winfree, Erik
  • 通讯作者:
    Winfree, Erik
Efficient Parameter Estimation for DNA Kinetics Modeled as Continuous-Time Markov Chains
作为连续时间马尔可夫链建模的 DNA 动力学的有效参数估计
  • DOI:
    10.1007/978-3-030-26807-7_5
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zolaktaf, S;Dannenberg, F;Winfree, E;Bouchard-Côté, A;Schmidt, M;Condon, A
  • 通讯作者:
    Condon, A
A domain-level DNA strand displacement reaction enumerator allowing arbitrary non-pseudoknotted secondary structures
  • DOI:
    10.1098/rsif.2019.0866
  • 发表时间:
    2020-06-24
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Badelt, Stefan;Grun, Casey;Winfree, Erik
  • 通讯作者:
    Winfree, Erik
A Unified Dynamic Programming Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Scalability, and Speed
  • DOI:
    10.1021/acssynbio.9b00523
  • 发表时间:
    2020-10-16
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Fornace, Mark E.;Porubsky, Nicholas J.;Pierce, Niles A.
  • 通讯作者:
    Pierce, Niles A.
Automated sequence-level analysis of kinetics and thermodynamics for domain-level DNA strand-displacement systems
  • DOI:
    10.1098/rsif.2018.0107
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Berleant, Joseph;Berlind, Christopher;Winfree, Erik
  • 通讯作者:
    Winfree, Erik
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Niles Pierce其他文献

Niles Pierce的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Niles Pierce', 18)}}的其他基金

NUPACK: New Capabilities for Nucleic Acid Analysis and Design
NUPACK:核酸分析和设计的新功能
  • 批准号:
    2317395
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Software Elements: NUPACK: Molecular Programming in the Cloud
软件元素:NUPACK:云端分子编程
  • 批准号:
    1835414
  • 财政年份:
    2018
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: CBC: Center for Molecular Cybernetics
合作研究:CBC:分子控制论中心
  • 批准号:
    0533064
  • 财政年份:
    2005
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Coarse-Graining DNA Energy Landscapes for the Analysis of Hybridization Kinetics
用于杂交动力学分析的粗粒 DNA 能量图
  • 批准号:
    0506468
  • 财政年份:
    2005
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CAREER: Engineering Nucleic Acid Devices
职业:工程核酸装置
  • 批准号:
    0448835
  • 财政年份:
    2005
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Travel Grant for the 28th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2024)
会议:第 28 届计算分子生物学研究国际会议 (RECOMB 2024) 旅费补助
  • 批准号:
    2414575
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
  • 批准号:
    2415059
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
  • 批准号:
    2349174
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
  • 批准号:
    2400087
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
MFB: Better Homologous Folding using Computational Linguistics and Deep Learning
MFB:使用计算语言学和深度学习更好的同源折叠
  • 批准号:
    2330737
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
  • 批准号:
    2340356
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
  • 批准号:
    EP/X033244/1
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了