Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
基本信息
- 批准号:2342618
- 负责人:
- 金额:$ 24.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep neural network (DNN) is widely deployed for a variety of decision-making tasks such as access control, medical diagnostics, and autonomous driving. Compromise of DNN models can severely disrupt inference behavior, leading to catastrophic outcomes for security and safety-sensitive applications. While a tremendous amount of efforts have been made to secure DNNs against external adversaries (e.g., adversarial examples), internal adversaries that tamper DNN model integrity through exploiting hardware threats (i.e., fault injection attacks) can raise unprecedented concerns. This project aims to offer insights into DNN security issues due to hardware-based fault attacks, and explore ways to promote the robustness and security of future deep learning system against such internal adversaries. This project targets one critical research topic, namely securing deep learning systems against hardware-based model tampering. Recent advances in hardware fault attacks (e.g., rowhammer) can deterministically inject faults to DNN models, causing bit flips in key DNN parameters including model weights. Such threats can be extremely dangerous as they could potentially enable malicious manipulation of prediction outcomes in the inference stage by the adversary. The project seeks to systematically understand the practicality and severity of DNN model bit flip attacks in real systems and investigate software/architecture level protection techniques to secure DNNs against internal tampering. The study focuses on quantized DNNs which exhibit higher robustness against model tampering. This project will incorporate the following research efforts: (1) Investigate the vulnerability of quantized DNNs to deterministic bit flipping of model weights concerning various attack objectives; (2) Explore algorithmic approaches to enhance the intrinsic robustness of quantized DNN models; (3) Design effective and efficient system and architecture level defense mechanisms to comprehensively defeat DNN model bit flip attacks. This project will result in the dissemination of shared data, attack artifacts, algorithms and tools to the broader hardware security and AI security community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)被广泛应用于各种决策任务,如访问控制、医疗诊断和自动驾驶。DNN模型的漏洞会严重扰乱推理行为,导致安全和安全敏感应用程序的灾难性后果。虽然已经做出了大量的努力来保护DNN免受外部对手(例如对抗性示例)的攻击,但通过利用硬件威胁(即故障注入攻击)来篡改DNN模型完整性的内部对手可能会引起前所未有的担忧。该项目旨在对基于硬件的故障攻击导致的DNN安全问题提供见解,并探索如何提高未来深度学习系统针对此类内部对手的健壮性和安全性。该项目针对一个关键的研究课题,即保护深度学习系统免受基于硬件的模型篡改。硬件故障攻击(例如Rowhammer)的最新进展可以确定地向DNN模型注入故障,导致包括模型权重在内的关键DNN参数中的比特翻转。这种威胁可能是极其危险的,因为它们可能会使对手在推断阶段恶意操纵预测结果。该项目旨在系统地了解DNN模型比特翻转攻击在实际系统中的实用性和严重性,并研究软件/体系结构级别的保护技术,以保护DNN免受内部篡改。研究的重点是量化DNN,它对模型篡改表现出更高的鲁棒性。本项目将包括以下研究工作:(1)研究量化DNN对不同攻击目标下模型权值确定性比特翻转的脆弱性;(2)探索增强量化DNN模型内在稳健性的算法途径;(3)设计有效的系统和体系结构层防御机制,全面抵御DNN模型比特翻转攻击。该项目将导致向更广泛的硬件安全和人工智能安全社区传播共享数据、攻击文物、算法和工具。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deliang Fan其他文献
Ultra-Low power neuromorphic computing with spin-torque devices
使用自旋扭矩设备的超低功耗神经拟态计算
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Sharad;Deliang Fan;K. Yogendra;K. Roy - 通讯作者:
K. Roy
High performance and energy-efficient in-memory computing architecture based on SOT-MRAM
基于SOT-MRAM的高性能、高能效内存计算架构
- DOI:
10.1109/nanoarch.2017.8053725 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhezhi He;Shaahin Angizi;Farhana Parveen;Deliang Fan - 通讯作者:
Deliang Fan
Hybrid polymorphic logic gate using 6 terminal magnetic domain wall motion device
使用6端磁畴壁运动器件的混合多态逻辑门
- DOI:
10.1109/iscas.2017.8050921 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Farhana Parveen;Shaahin Angizi;Zhezhi He;Deliang Fan - 通讯作者:
Deliang Fan
Leveraging All-Spin Logic to Improve Hardware Security
利用全自旋逻辑提高硬件安全性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Qutaiba Alasad;Jiann;Deliang Fan - 通讯作者:
Deliang Fan
Computing with Spin-Transfer-Torque Devices: Prospects and Perspectives
使用自旋转移矩装置进行计算:前景与展望
- DOI:
10.1109/isvlsi.2014.120 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
K. Roy;M. Sharad;Deliang Fan;K. Yogendra - 通讯作者:
K. Yogendra
Deliang Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deliang Fan', 18)}}的其他基金
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2328803 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
- 批准号:
2349802 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2414603 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
- 批准号:
2342726 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
- 批准号:
2411207 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
- 批准号:
2153525 - 财政年份:2022
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
- 批准号:
2144751 - 财政年份:2022
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
- 批准号:
2019548 - 财政年份:2020
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
E2CDA: Type II: Non-Volatile In-Memory Processing Unit: Memory, In-Memory Logic and Deep Neural Network
E2CDA:II 类:非易失性内存中处理单元:内存、内存中逻辑和深度神经网络
- 批准号:
2005209 - 财政年份:2019
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
- 批准号:
2003749 - 财政年份:2019
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
相似国自然基金
水凝胶改性陶瓷人工关节牢固结合界面的构筑与减磨润滑机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
锆酸铅基反铁电体畴动力学及其调控机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
载铁生物炭对土壤镉污染的吸附固定及微生物协同作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SREBP转录因子BbSre1负调控球孢白僵菌抗真菌物质产生的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向截肢患者运动感知重建的肌电假肢手关节运动反馈时变编码研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向水质应急快检的碳点/微流控限域增强发光传感研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向挠性压电太阳翼的物理信息混合建模与非同位控制方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
随机3维 Burgers 方程正则性研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
犬尿氨酸通过AhR/STAT3轴活化粒细胞样MDSCs促进慢性肾脏病心脏纤维化的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
磁性的机器学习研究: 以图神经网络为中心
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
- 批准号:
2317830 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Continuing Grant