EAGER: Collaborative Research: Some Effects of Weak Electric and Magnetic Fields on Biological Systems

EAGER:合作研究:弱电场和弱磁场对生物系统的一些影响

基本信息

  • 批准号:
    1644384
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

PIs: Barnes/Beane Proposal Numbers: 1644371/1644384 Controversy over possible health effects of electric and magnetic fields has been raised with respect to radar pulses, power lines, cell phones and other sources of electromagnetic fields such as Wi-Fi, TV and computers. Many isolated experiments have shown that weak fields can modify the function of biological systems but no overarching mechanism(s) linking fields and effects are known. The proposed work aims to investigate the fundamental link--from the physics though the chemistry to the biology--between the fields and the objects they seem to influence. The work will build on theoretical and experimental work that shows weak electric and magnetic fields can modify the recombination times for radical pairs and concentrations of radicals such as reactive oxygen species (ROS) and can modify the growth rate of normal and cancer cells and planarians. Broad impact will be achieved by providing an improved ability to specify exposure conditions that will inhibit or accelerate the growth of cells such as cancers reproducibly so that these fields can be used both experimentally and therapeutically. This project, led by a newly formed collaboration, will result in the cross-training of graduate and undergraduate students at two universities: electrical engineering students at the University of Colorado will gain exposure to biology, chemistry and physics, while biomedical students at Western Michigan University will undertake engineering and physics practical experiences. The intellectual challenge concerning the biological effects of electromagnetic fields has been to build a cause and effect chain of logic from the physics through the chemistry to the biology and on to potential health effects, potential clinical uses, and potential tools to probe other biological questions. Many isolated experiments have shown that weak fields can modify the function of biological systems. Though no overarching mechanism(s) linking fields and effects are known; radicals have been implicated in some instances. This work seeks to provide a series of measurements that more completely characterizes the effects of weak magnetic fields on cell growth. Experimental and theoretical work will be carried out to examine the effects of these fields from less than 1 ìT to 1 mT on a) cell growth rates, b) radical concentrations, and c) membrane potentials in fibrosarcoma HT1080 cells, fibroblast cells and planarian flatworms in a magnetically shielded insert inside standard cell culture incubators. Static magnetic field data will be compared with the theoretical predictions for changes in radical concentrations. Time varying magnetic field measurements will be made as functions of amplitude, frequency, repetition rate and length of exposure. Measurements made at low frequencies (less than 2 kHz) will separate direct magnetic field effects from the effects of induced electric fields and induced currents by use of a ringed dish as well as in a separate electric field exposure system. Measurements from 1 to 10 MHz will look for the effects of hyperfine transitions that are predicted for hydrogen atoms in the earth?s magnetic field near 45 ìT as a function of amplitudes, frequency, exposure times and static magnetic fields. The work will focus on the coupling between nuclear spins to the active electrons within the fragments of radical pairs and with biological cycle times, which can range from fractions of seconds to hours or longer. Radical concentration measurements will be made using fluorescent dyes for O-2 (super oxide), NADPH (nicotinamide adenine dinucleotide phosphate-oxidase) and H2O2 (hydrogen peroxide), and changes in membrane potentials will be examined. The new information gained as a result of the proposed work should help us understand exposure conditions to the fields from radar pulses, power lines, cell phones, Wi-Fi, TV, computers, etc., that may or may not lead to health effects. Broad impact will be achieved by providing an improved ability to specify exposure conditions that will inhibit or accelerate the growth of cells such as cancers reproducibly so that these fields can be used both experimentally and therapeutically. The project will result in the cross-training of graduate and undergraduate students at two universities: electrical engineering students at the University of Colorado will gain exposure to biology, chemistry and physics, while biomedical students at Western Michigan University will undertake engineering and physics practical experiences.
就雷达脉冲、电力线、手机和其他电磁场来源(如Wi-Fi、电视和电脑)而言,电场和磁场可能对健康产生的影响引发了争议。许多孤立的实验表明,弱场可以改变生物系统的功能,但还不知道连接弱场和弱场效应的总体机制。这项提议的工作旨在调查电磁场和它们似乎影响的物体之间的基本联系——从物理学到化学再到生物学。这项工作将建立在理论和实验工作的基础上,这些工作表明,弱电场和磁场可以改变自由基对的重组时间和自由基(如活性氧(ROS))的浓度,并可以改变正常细胞、癌细胞和涡虫的生长速度。通过提供一种改进的能力来指定可重复地抑制或加速癌症等细胞生长的暴露条件,从而使这些领域可用于实验和治疗,将产生广泛的影响。该项目由一个新成立的合作组织领导,将导致两所大学的研究生和本科生的交叉培训:科罗拉多大学的电气工程专业的学生将获得生物学、化学和物理学的接触,而西密歇根大学的生物医学专业的学生将获得工程和物理学的实践经验。关于电磁场的生物效应的智力挑战是建立一个因果逻辑链,从物理学到化学再到生物学,再到潜在的健康影响、潜在的临床应用和潜在的工具来探索其他生物学问题。许多孤立的实验表明,弱场可以改变生物系统的功能。虽然没有联系领域和影响的总体机制是已知的;激进派在某些情况下也有牵连。这项工作旨在提供一系列的测量,更完整地表征弱磁场对细胞生长的影响。实验和理论研究将在标准细胞培养箱内的磁屏蔽插入物中,检测从小于1 ìT到1 mT的磁场对纤维肉瘤HT1080细胞、成纤维细胞和涡虫的a)细胞生长速率、b)自由基浓度和c)膜电位的影响。静态磁场数据将与理论预测的自由基浓度变化进行比较。时变磁场测量将作为振幅、频率、重复率和曝光长度的函数。在低频率(小于2khz)下进行的测量将通过使用环形天线以及在单独的电场暴露系统中将直接磁场效应与感应电场和感应电流的影响分开。从1到10兆赫的测量将寻找超精细跃迁的影响,这是对地球上氢原子的预测?s的磁场在45 ìT附近的振幅,频率,曝光时间和静态磁场的函数。这项工作将集中在核自旋与自由基对碎片内活性电子之间的耦合以及生物周期时间,从几秒钟到几小时或更长时间不等。自由基浓度测量将使用荧光染料对O-2(超氧化物),NADPH(烟酰胺腺嘌呤二核苷酸磷酸氧化酶)和H2O2(过氧化氢),并在膜电位的变化将进行检查。从拟议的工作中获得的新信息应该有助于我们了解雷达脉冲、电力线、手机、Wi-Fi、电视、电脑等场所的暴露条件,这些条件可能会或可能不会导致健康影响。通过提供一种改进的能力来指定可重复地抑制或加速癌症等细胞生长的暴露条件,从而使这些领域可用于实验和治疗,将产生广泛的影响。该项目将对两所大学的研究生和本科生进行交叉培训:科罗拉多大学的电气工程专业的学生将接触到生物学、化学和物理学,而西密歇根大学的生物医学专业的学生将获得工程和物理学的实践经验。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weak magnetic fields modulate superoxide to control planarian regeneration
  • DOI:
    10.3389/fphy.2022.1086809
  • 发表时间:
    2023-01-04
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Kinsey, Luke J.;Van Huizen, Alanna V.;Beane, Wendy S.
  • 通讯作者:
    Beane, Wendy S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wendy Beane其他文献

19-P012 H,K-ATPase-mediated ion transport regulates anterior patterning in regenerating planaria
  • DOI:
    10.1016/j.mod.2009.06.800
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Wendy Beane;Néstor Oviedo;Dany Adams;Michael Levin
  • 通讯作者:
    Michael Levin

Wendy Beane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wendy Beane', 18)}}的其他基金

CAREER: Molecular Mechanisms Regulating Neural Regeneration in Planarians
职业:调节涡虫神经再生的分子机制
  • 批准号:
    1652312
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了