CM: Machine-Learning Driven Decision Support in Design for Manufacturability

CM:可制造性设计中机器学习驱动的决策支持

基本信息

  • 批准号:
    1644441
  • 负责人:
  • 金额:
    $ 41.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Traditional design and manufacturing relies on the experience and training of the designer to create a component with manufacturable features. However, even after careful design, the as-manufactured part might differ from the as-designed part. In addition, the inclusion of certain features might significantly increase the manufacturing cost. For example, the inclusion of a thin feature might necessitate the use of complex jigs or fixtures to prevent the flexing of the part during machining, which increases manufacturing time and cost. This problem is also encountered in additive manufacturing, where there is no body of knowledge regarding design rules that will reduce manufacturing defects. This project aims to address this challenge by developing computer-aided design tools that can identify difficult-to-manufacture features using machine learning. The process of identification of the source of infeasibility in manufacturing in a complex part is a challenging task, even for an experienced designer. Therefore, the use of machine learning could potentially play a critical role by detecting non-intuitive patterns from examples of feasible and infeasible parts, and identifying the source of infeasibility. The results of the machine-learning framework will be used to build a decision support framework that can interactively identify manufacturability concerns during the design process and present design modifications interactively to the designer. Finally, the multidisciplinary components of the project will be integrated into a larger educational effort to offer students a solid foundation in the critical interdisciplinary area of cyber-enabled manufacturing.The objective of this project is to create a design for manufacturability tool that uses machine learning to identify difficult to machine or manufacture features in a computer-aided design model and suggest changes to the non-manufacturable features. The novelty of this research is the use of machine learning in a computer-aided design and manufacturing environment, making it accessible to designers using a familiar design interface. The research team will develop tools for loading existing models of parts and performing virtual machining simulations to create a digital voxelized representation of the as-manufactured part. The original as-designed part will also be converted to a voxelized representation that will be suitable for machine learning. The machine-learning framework will be trained using multiple machining simulations and will classify feasible and infeasible designs by learning from positive and negative examples. Furthermore, the machine-learning framework will be used to present alternative feasible designs to the designer.
传统的设计和制造依赖于设计师的经验和培训来创建具有可制造特征的部件。然而,即使经过仔细的设计,制造的零件也可能与设计的零件不同。此外,包含某些功能可能会显著增加制造成本。例如,包含薄特征可能需要使用复杂的夹具或夹具,以防止零件在加工过程中发生弯曲,这会增加制造时间和成本。这个问题在加法制造中也会遇到,因为没有关于减少制造缺陷的设计规则的知识体系。该项目旨在通过开发计算机辅助设计工具来应对这一挑战,这些工具可以使用机器学习来识别难以制造的特征。识别复杂零件制造中不可行的根源是一项具有挑战性的任务,即使对经验丰富的设计师来说也是如此。因此,机器学习的使用可能会发挥关键作用,从可行和不可行部分的例子中检测非直觉模式,并确定不可行的来源。机器学习框架的结果将被用来建立一个决策支持框架,该框架可以在设计过程中交互地确定可制造性问题,并以交互方式向设计者提出设计修改。最后,该项目的多学科组成部分将被整合到更大的教育努力中,为学生在网络制造的关键跨学科领域提供坚实的基础。该项目的目标是创建一种可制造性设计工具,该工具使用机器学习来识别计算机辅助设计模型中难以加工或制造的特征,并建议对不可制造的特征进行更改。这项研究的新颖性在于在计算机辅助设计和制造环境中使用机器学习,使设计师可以使用熟悉的设计界面访问机器学习。研究团队将开发用于加载现有零件模型和执行虚拟加工模拟的工具,以创建制造零件的数字体素表示。原来设计的零件也将转换为适合机器学习的体素表示法。机器学习框架将使用多个加工模拟进行训练,并将通过从正反两个例子中学习来对可行和不可行的设计进行分类。此外,机器学习框架将被用来向设计者呈现替代的可行设计。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct 3D printing of multi-level voxel models
  • DOI:
    10.1016/j.addma.2021.101929
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Sambit Ghadai;Anushrut Jignasu;A. Krishnamurthy
  • 通讯作者:
    Sambit Ghadai;Anushrut Jignasu;A. Krishnamurthy
Algorithmically-consistent deep learning frameworks for structural topology optimization
Multi-Level 3D CNN for Learning Multi-Scale Spatial Features
NURBS-Python: An open-source object-oriented NURBS modeling framework in Python
  • DOI:
    10.1016/j.softx.2018.12.005
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Bingol, Onur Rauf;Krishnamurthy, Adarsh
  • 通讯作者:
    Krishnamurthy, Adarsh
Orthogonal Distance Fields Representation for Machine-Learning Based Manufacturability Analysis
基于机器学习的可制造性分析的正交距离场表示
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adarsh Krishnamurthy其他文献

Procedural generation of 3D maize plant architecture from LiDAR data
基于激光雷达数据的三维玉米植株结构的程序生成
  • DOI:
    10.1016/j.compag.2025.110382
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Mozhgan Hadadi;Mehdi Saraeian;Jackson Godbersen;Talukder Z. Jubery;Yawei Li;Lakshmi Attigala;Aditya Balu;Soumik Sarkar;Patrick S. Schnable;Adarsh Krishnamurthy;Baskar Ganapathysubramanian
  • 通讯作者:
    Baskar Ganapathysubramanian
Real time 3D reconstruction for enhanced cybersecurity of additive manufacturing processes
用于增强增材制造过程网络安全的实时 3D 重建
  • DOI:
    10.1016/j.jmapro.2025.04.004
  • 发表时间:
    2025-07-15
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Ankush Kumar Mishra;Shi Yong Goh;Baskar Ganapathysubramanian;Adarsh Krishnamurthy
  • 通讯作者:
    Adarsh Krishnamurthy
Cyber-agricultural systems for crop breeding and sustainable production
用于作物育种和可持续生产的数字农业系统
  • DOI:
    10.1016/j.tplants.2023.08.001
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    20.800
  • 作者:
    Soumik Sarkar;Baskar Ganapathysubramanian;Arti Singh;Fateme Fotouhi;Soumyashree Kar;Koushik Nagasubramanian;Girish Chowdhary;Sajal K. Das;George Kantor;Adarsh Krishnamurthy;Nirav Merchant;Asheesh K. Singh
  • 通讯作者:
    Asheesh K. Singh
Multi-Scale Modeling of Patient-Specific Ventricular Geometry, Fiber Structure, and Biomechanics
  • DOI:
    10.1016/j.bpj.2011.11.1924
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Adarsh Krishnamurthy;Chris Villongco;Roy Kerckhoffs;Andrew McCulloch
  • 通讯作者:
    Andrew McCulloch

Adarsh Krishnamurthy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adarsh Krishnamurthy', 18)}}的其他基金

EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323716
  • 财政年份:
    2023
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Standard Grant
CAREER: GPU-Accelerated Framework for Integrated Modeling and Biomechanics Simulations of Cardiac Systems
职业:用于心脏系统集成建模和生物力学模拟的 GPU 加速框架
  • 批准号:
    1750865
  • 财政年份:
    2018
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Linkage Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
  • 批准号:
    EP/X033244/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Continuing Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 41.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了