CAREER: GPU-Accelerated Framework for Integrated Modeling and Biomechanics Simulations of Cardiac Systems

职业:用于心脏系统集成建模和生物力学模拟的 GPU 加速框架

基本信息

  • 批准号:
    1750865
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Cardiovascular diseases, such as heart failure, are one of the leading cause of death in the U.S. and pose a severe burden to the healthcare system. Most current treatments for cardiovascular diseases are based on rough estimates of outcomes from the results of clinical trials, which might not apply to individual patients due to patient-specific variations. Computational models of the cardiovascular system, developed from patient-specific clinical data, can help refine the diagnosis and personalize the treatment, significantly improving patient care and reducing mortality. The current patient-specific methods for cardiovascular diseases have been demonstrated mainly in simple, isolated examples. For widespread adoption of personalized medicine, a flexible and easy-to-use framework for integrating patient data and simulating cardiac biomechanics needs to be developed. This project focuses on creating an integrative framework with simulation, analysis, and visualization tools that will significantly advance the state-of-the-art in personalized medicine, ultimately improving patient care and treatment outcomes. Results from this research will benefit the U.S. healthcare system, society, and economy, while supporting the NSF mission to promote the progress of science and advance the national health. The tools developed as a part of this research involves several disciplines including computer science, bioengineering, and mechanical engineering. The multidisciplinary components of the project is being integrated into a larger educational effort that offers the students a solid foundation in developing computational tools and algorithms, while also broadening the participation of underrepresented groups in research.The primary objective of this research is the advancement of the state-of-the-art in translational medicine with the help of computational modeling and interactive analysis tools to improve the basic understanding of the cardiac muscle and personalize treatment of cardiovascular diseases in patients. The research focuses on creating a novel computational framework to automate biomechanics finite-element simulation and analysis of patient-specific cardiac systems. Further, it aims to advance the knowledge of disease and therapeutic mechanisms by developing advanced multiscale methods to model muscle contraction and growth. Some of the key computational tools and methods proposed as part of this framework include: (1) a geometric mesh generation tool for systematic generation of patient-specific finite element meshes from clinical data; (2) an algorithm for accelerating high-order finite-element simulations using the graphics processing unit (GPU) for fast tuning of model parameters to match the patients' baseline cardiac function; (3) new methods for multiphysics simulations of cardiac systems to model multi-scale muscle mechanics and tissue growth; and (4) new visualization and virtual reality tools to enable animated volume rendering and visual analytics of the results of the cardiac simulations. Successful development of these open-source tools will enable faster adoption of patient-specific computational models by the research community to understand therapeutic mechanisms. This framework can significantly advance the state-of-the-art in personalized medicine, ultimately improving patient care and treatment outcomes. The multidisciplinary components of the project is being integrated into a larger educational effort to offer students a solid foundation in combining biomedical engineering with scientific computing. The education and outreach plans of this research can inform the community about the crucial role of computational models in improving patient-care.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
心血管疾病,如心力衰竭,是美国的主要死亡原因之一,并对医疗保健系统造成严重负担。目前大多数心血管疾病的治疗方法都是基于对临床试验结果的粗略估计,由于患者特异性差异,这些结果可能不适用于个体患者。根据患者特定的临床数据开发的心血管系统计算模型可以帮助完善诊断和个性化治疗,显著改善患者护理并降低死亡率。目前针对心血管疾病的患者特异性方法主要在简单、孤立的例子中得到证明。为了广泛采用个性化医疗,需要开发一个灵活且易于使用的框架,用于整合患者数据和模拟心脏生物力学。该项目的重点是创建一个具有模拟,分析和可视化工具的综合框架,这将显着推进个性化医疗的最新技术,最终改善患者护理和治疗效果。这项研究的结果将有利于美国的医疗保健系统,社会和经济,同时支持NSF的使命,以促进科学的进步和促进国民健康。作为本研究的一部分开发的工具涉及多个学科,包括计算机科学、生物工程和机械工程。该项目的多学科组成部分正在被整合到一个更大的教育工作,为学生提供了一个坚实的基础,在开发计算工具和算法,同时也扩大了代表性不足的群体在研究中的参与。这项研究的主要目标是促进国家的,艺术在转化医学的帮助下,计算建模和交互式分析工具,以提高对心肌的基本理解和个性化治疗心血管疾病,患者该研究的重点是创建一个新的计算框架,以自动化生物力学有限元模拟和分析患者特定的心脏系统。此外,它旨在通过开发先进的多尺度方法来模拟肌肉收缩和生长,从而提高对疾病和治疗机制的认识。作为该框架的一部分提出的一些关键计算工具和方法包括:(1)用于从临床数据系统地生成患者特定有限元网格的几何网格生成工具;(2)用于使用图形处理单元(GPU)加速高阶有限元模拟的算法,用于快速调整模型参数以匹配患者的基线心脏功能;(3)用于心脏系统的多物理场模拟的新方法,以模拟多尺度肌肉力学和组织生长;以及(4)新的可视化和虚拟现实工具,以实现心脏模拟结果的动画体积渲染和可视化分析。这些开源工具的成功开发将使研究界能够更快地采用患者特定的计算模型,以了解治疗机制。该框架可以显著推进个性化医疗的最新发展,最终改善患者护理和治疗效果。该项目的多学科组成部分正在被整合到一个更大的教育工作,为学生提供一个坚实的基础,结合生物医学工程与科学计算。这项研究的教育和推广计划可以告知社区计算模型在改善病人护理方面的关键作用。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable Adaptive PDE Solvers in Arbitrary Domains
GPU-Accelerated Post-Processing and Animated Volume Rendering of Isogeometric Analysis Results
GPU 加速的等几何分析结果的后处理和动画体积渲染
  • DOI:
    10.14733/cadaps.2022.779-796
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shah, Harshil;Huang, Xin;Bingol, Onur;Rajanna, Manoj;Krishnamurthy, Adarsh
  • 通讯作者:
    Krishnamurthy, Adarsh
Direct 3D printing of multi-level voxel models
  • DOI:
    10.1016/j.addma.2021.101929
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Sambit Ghadai;Anushrut Jignasu;A. Krishnamurthy
  • 通讯作者:
    Sambit Ghadai;Anushrut Jignasu;A. Krishnamurthy
Optimal surrogate boundary selection and scalability studies for the shifted boundary method on octree meshes
THB-Diff: a GPU-accelerated differentiable programming framework for THB-splines
  • DOI:
    10.1007/s00366-023-01929-1
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    A. Moola;Aditya Balu;A. Krishnamurthy;Aishwarya Pawar
  • 通讯作者:
    A. Moola;Aditya Balu;A. Krishnamurthy;Aishwarya Pawar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adarsh Krishnamurthy其他文献

Procedural generation of 3D maize plant architecture from LiDAR data
基于激光雷达数据的三维玉米植株结构的程序生成
  • DOI:
    10.1016/j.compag.2025.110382
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Mozhgan Hadadi;Mehdi Saraeian;Jackson Godbersen;Talukder Z. Jubery;Yawei Li;Lakshmi Attigala;Aditya Balu;Soumik Sarkar;Patrick S. Schnable;Adarsh Krishnamurthy;Baskar Ganapathysubramanian
  • 通讯作者:
    Baskar Ganapathysubramanian
Real time 3D reconstruction for enhanced cybersecurity of additive manufacturing processes
用于增强增材制造过程网络安全的实时 3D 重建
  • DOI:
    10.1016/j.jmapro.2025.04.004
  • 发表时间:
    2025-07-15
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Ankush Kumar Mishra;Shi Yong Goh;Baskar Ganapathysubramanian;Adarsh Krishnamurthy
  • 通讯作者:
    Adarsh Krishnamurthy
Cyber-agricultural systems for crop breeding and sustainable production
用于作物育种和可持续生产的数字农业系统
  • DOI:
    10.1016/j.tplants.2023.08.001
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    20.800
  • 作者:
    Soumik Sarkar;Baskar Ganapathysubramanian;Arti Singh;Fateme Fotouhi;Soumyashree Kar;Koushik Nagasubramanian;Girish Chowdhary;Sajal K. Das;George Kantor;Adarsh Krishnamurthy;Nirav Merchant;Asheesh K. Singh
  • 通讯作者:
    Asheesh K. Singh
Multi-Scale Modeling of Patient-Specific Ventricular Geometry, Fiber Structure, and Biomechanics
  • DOI:
    10.1016/j.bpj.2011.11.1924
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Adarsh Krishnamurthy;Chris Villongco;Roy Kerckhoffs;Andrew McCulloch
  • 通讯作者:
    Andrew McCulloch

Adarsh Krishnamurthy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adarsh Krishnamurthy', 18)}}的其他基金

EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323716
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CM: Machine-Learning Driven Decision Support in Design for Manufacturability
CM:可制造性设计中机器学习驱动的决策支持
  • 批准号:
    1644441
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

适应CPU/GPU异构环境的大规模并行网格生成方法研究
  • 批准号:
    ZYQ25F020002
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于GPU共享的智算集群算力效率优化方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
面向多 GPU 的大规模深度神经网络推理加速关键技术研 究
  • 批准号:
    2024JJ6437
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
CPU/GPU 异构环境下电磁场计算的 FVTD 并行算法研究
  • 批准号:
    2024JJ7367
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
可GPU并行的大规模计算算法研究及其在云计算资源调度中的应用
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    30.0 万元
  • 项目类别:
    省市级项目
超大规模集成GPU系统的可靠性分析及优化研究
  • 批准号:
    62372207
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
  • 批准号:
    22373112
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于动态电压频率调整的GPU集群在线能效优化研究
  • 批准号:
    62302126
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
GPU加速的高效能射电天文数据成像系统
  • 批准号:
    62372393
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于GPU众核架构的后量子密码软硬协同并行加速方法研究
  • 批准号:
    62302238
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions
职业:极端​​水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施
  • 批准号:
    2338313
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Elements: Sustained Innovation and Service by a GPU-accelerated Computation Tool for Applications of Topological Data Analysis
要素:GPU加速计算工具在拓扑数据分析应用中的持续创新和服务
  • 批准号:
    2310510
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a GPU-Accelerated Computing Cluster for Advanced Optimization and Design in Multidisciplinary Research and Education
设备:MRI:Track 1 获取 GPU 加速计算集群,用于多学科研究和教育中的高级优化和设计
  • 批准号:
    2320649
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: GPU-accelerated First-Principles Simulation of Exciton Dynamics in Complex Systems
合作研究:要素:复杂系统中激子动力学的 GPU 加速第一性原理模拟
  • 批准号:
    2209858
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
GPU-Accelerated Parallel Computer for Life Sciences Research
用于生命科学研究的 GPU 加速并行计算机
  • 批准号:
    10415306
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Collaborative Research: Elements: GPU-accelerated First-Principles Simulation of Exciton Dynamics in Complex Systems
合作研究:要素:复杂系统中激子动力学的 GPU 加速第一性原理模拟
  • 批准号:
    2209857
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CC* Compute: Augmenting a 2,560-core EPYC2 Computational Cluster with GPUs for AI, Machine Learning, and other GPU-Accelerated HPC Applications
CC* 计算:使用 GPU 增强 2,560 核 EPYC2 计算集群,用于人工智能、机器学习和其他 GPU 加速的 HPC 应用
  • 批准号:
    2201497
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU-accelerated cluster for research, training and outreach
MRI:获取 GPU 加速集群用于研究、培训和推广
  • 批准号:
    2215734
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: SHF: GPU-accelerated FSM computations with advanced speculation
CRII:SHF:具有高级推测功能的 GPU 加速 FSM 计算
  • 批准号:
    2105006
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
GPU accelerated computing server for artificial intelligence
人工智能GPU加速计算服务器
  • 批准号:
    457028404
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Major Research Instrumentation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了