EAGER: Scanningless 3D Bioprinting of Multiple Biomaterials and Cells for Biomimetic Vascular Network
EAGER:用于仿生血管网络的多种生物材料和细胞的非扫描 3D 生物打印
基本信息
- 批准号:1644967
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Vascularization has been the bottleneck for engineering large-scale or highly metabolic tissues. Without vascular support, cellular viability and function of engineered tissues or organs will be compromised in very short time. Traditional biomanufacturing methods such as nozzle-based and ink-jet based 3D printing are often slow and have limited printing resolution for creating biomimetic vasculature. This EArly-concept Grant for Exploratory Research (EAGER) award supports fundamental research on a new biomanufacturing method that simultaneously offers the speed, the resolution, and the ability to process multiple biomaterials and cells to 3D print biomimetic vascular network. Results from this research will potentially transform the biomanufacturing field for future tissue and organ printing with biomimetic vascular network. Printing organs such as heart and liver will reduce the shortage of donor organs for transplantations and save lives. Additionally, the biomimetic in vitro tissue models could significantly benefit the pharmatheutical industry because they can be used in early drug screening for drug toxicity and efficacy testing.The new biomanufacturing method features ultraviolet light-induced hydrogel formation in a scanningless and continuous fashion for rapid 3D printing of biomimetic vascular network. The first research objective is to understand the effects of material composition and processing parameters on mechanical properties of the hydrogel scaffolds for the 3D printing process. To achieve this objective, glycidal methacrylate-hyaluronic acid and gelatin methacrylate will be synthesized as the hydrogel materials with different methacrylation ratios. Hydrogel scaffolds will be printed by varying material composition (such as molecular weight and concentration of the monomers) and processing parameters (such as ultraviolet light intensity and exposure time). Mechanical properties (such as stiffness and yield strength) of printed hydrogel scaffolds will be measured by a nanoindentor and dynamic mechanical analyzer. The second objective is to understand how scaffold shape and chemistry affect vascular network formation. To achieve this objective, scaffolds of different shapes including single tubes and branched tubes will be printed using different hydrogels (glycidal methacrylate-hyaluronic acid and gelatin methacrylate). Human umbilical vein endothelial cells and mesenchymal stem cells will be encapsulated in the hydrogels to form a vascularized tissue. Vascular network formation such as lumens will be imaged using confocal microscopy.
血管化一直是工程大规模或高度代谢组织的瓶颈。如果没有血管支持,工程组织或器官的细胞活力和功能将在很短的时间内被损害。传统的生物制造方法,例如基于喷嘴的和基于喷墨的3D打印通常很慢,并且印刷分辨率有限,用于创建仿生脉管系统。这项探索性研究的早期概念赠款(急切)奖支持了一种基本研究,该研究同时提供了速度,分辨率以及处理多个生物材料和细胞的能力,以至于3D印刷仿生血管网络。这项研究的结果将有可能改变使用仿生血管网络的未来组织和器官印刷的生物制造场。诸如心脏和肝脏等印刷器官将减少供体器官的短缺移植并挽救生命。此外,生物仿生体体内组织模型可以显着受益于药物行业,因为它们可用于药物毒性和功效测试的早期药物筛查。新的生物制造方法具有紫外线诱导的水凝胶形成,以扫描和连续的方式用于生物象征性血管网络的快速3D打印。第一个研究目标是了解材料组成和加工参数对3D打印过程中水凝胶支架机械性能的影响。为了实现这一目标,将乙二醇甲基丙烯酸酰酸酸和明胶甲基丙烯酸酯合成为具有不同甲基丙烯酸酯比的水凝胶材料。水凝胶支架将通过不同的材料组成(例如分子量和单体的浓度)和加工参数(例如紫外线的光强度和暴露时间)来打印。印刷水凝胶支架的机械性能(例如刚度和屈服强度)将通过纳米INDENTOR和动态机械分析仪进行测量。第二个目标是了解脚手架形状和化学如何影响血管网络形成。为了实现这一目标,将使用不同的水凝胶(糖甲基丙烯酸甲酯 - 透明甲酸和明胶甲基丙烯酸酯)打印不同形状的支架。人脐静脉内皮细胞和间质干细胞将封装在水凝胶中,形成血管化组织。血管网络形成(例如流明)将使用共聚焦显微镜成像。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlled Growth Factor Release in 3D‐Printed Hydrogels
- DOI:10.1002/adhm.201900977
- 发表时间:2019-11
- 期刊:
- 影响因子:10
- 作者:Pengrui Wang;D. Berry;A. Moran;F. He;Trevor Tam;Luwen Chen;Shaochen Chen
- 通讯作者:Pengrui Wang;D. Berry;A. Moran;F. He;Trevor Tam;Luwen Chen;Shaochen Chen
Direct 3D bioprinting of cardiac micro-tissues mimicking native myocardium
- DOI:10.1016/j.biomaterials.2020.120204
- 发表时间:2020-10-01
- 期刊:
- 影响因子:14
- 作者:Liu, Justin;Miller, Kathleen;Chen, Shaochen
- 通讯作者:Chen, Shaochen
Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix
- DOI:10.1016/j.biomaterials.2018.12.009
- 发表时间:2019-02-01
- 期刊:
- 影响因子:14
- 作者:Yu, Claire;Ma, Xuanyi;Chen, Shaochen
- 通讯作者:Chen, Shaochen
A 3D Tissue-Printing Approach for Validation of Diffusion Tensor Imaging in Skeletal Muscle
- DOI:10.1089/ten.tea.2016.0438
- 发表时间:2017-09-01
- 期刊:
- 影响因子:4.1
- 作者:Berry, David B.;You, Shangting;Ward, Samuel R.
- 通讯作者:Ward, Samuel R.
3D-Printing of Functional Biomedical Microdevices via Light- and Extrusion-Based Approaches
- DOI:10.1002/smtd.201700277
- 发表时间:2018-02-13
- 期刊:
- 影响因子:12.4
- 作者:Hwang, Henry H.;Zhu, Wei;Chen, Shaochen
- 通讯作者:Chen, Shaochen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaochen Chen其他文献
Toward a 3D bio-printed model of placental-villous transport: Growth and viability of human primary placental cell-types on hydrogel scaffolds
- DOI:
10.1016/j.placenta.2019.06.341 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:
- 作者:
Chandana Tekkatte;Claire Yu;Xuanyi Ma;Henry H. Hwang;Omar Farah;Ching-Wen Chang;Mana M. Parast;Shaochen Chen;Louise C. Laurent - 通讯作者:
Louise C. Laurent
LASER MICROMACHINING OF A BIODEGRADABLE POLYMER
可生物降解聚合物的激光微加工
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
V. Kancharla;Shaochen Chen;D. Zamzow;D. P. Baldwin - 通讯作者:
D. P. Baldwin
Bioprinting of Complex Vascularized Tissues.
复杂血管组织的生物打印。
- DOI:
10.1007/978-1-0716-0611-7_14 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Wei Zhu;Claire Yu;Bingjie Sun;Shaochen Chen - 通讯作者:
Shaochen Chen
Laser Processing of Natural Biomaterials
天然生物材料的激光加工
- DOI:
10.1007/978-3-642-41341-4_10 - 发表时间:
2013 - 期刊:
- 影响因子:4.6
- 作者:
Wande Zhang;Peter H. Chung;A. Zhang;Shaochen Chen - 通讯作者:
Shaochen Chen
Tuning the extraordinary transmission in a metallic/dielectric CDC hole array by changing the temperature.
通过改变温度来调节金属/电介质 CDC 孔阵列中的非凡传输。
- DOI:
10.1364/oe.18.015553 - 发表时间:
2010 - 期刊:
- 影响因子:3.8
- 作者:
Wei Wang;Yalin Lu;R. Knize;K. Reinhardt;Shaochen Chen - 通讯作者:
Shaochen Chen
Shaochen Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaochen Chen', 18)}}的其他基金
BRITE Fellow: Intelligent Nanoscale 3D Biomanufacturing for Human-on-a-Chip
BRITE 研究员:用于芯片人体的智能纳米级 3D 生物制造
- 批准号:
2135720 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Rapid 3D Bioprinting of Engineered Bionic Corals towards Scalable Biofuel Manufacturing
工程仿生珊瑚的快速 3D 生物打印可实现可扩展的生物燃料制造
- 批准号:
1907434 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Three-Dimensional Printing of Functional Nanobots for Precision Gene Delivery
EAGER:用于精确基因传递的功能纳米机器人的三维打印
- 批准号:
1937653 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Understanding Nano-Cardio Interactions Using 3D Bioprinted Human Heart Tissue
EAGER:使用 3D 生物打印人体心脏组织了解纳米心脏相互作用
- 批准号:
1903933 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Cybermanufacturing: Cloud-based, Rapid, Microscale 3D Bioprinting
EAGER:网络制造:基于云的快速微型 3D 生物打印
- 批准号:
1547005 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Cell Modulation Using Biomaterials with a Negative Poisson's Ratio
使用具有负泊松比的生物材料进行细胞调节
- 批准号:
1332681 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Nano-/femtosecond Laser Processing of Gas Impregnated Polymer for Biomedical Applications
合作研究:用于生物医学应用的气体浸渍聚合物的纳秒/飞秒激光加工
- 批准号:
1130894 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SNM: Continuous and Scalable Nanomanufacturing for 3-Dimensional Functional Biomedical Devices
SNM:连续且可扩展的 3 维功能生物医学设备纳米制造
- 批准号:
1120795 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Surface Plasmon-Assisted Nanolithography
表面等离子体辅助纳米光刻
- 批准号:
1109591 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Massive Parallel Laser Direct-Write of Sub-micron Dent Array for Quantum Leap of Fatigue Performance
合作研究:大规模并行激光直写亚微米凹痕阵列,实现疲劳性能的量子飞跃
- 批准号:
1106487 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
高精度无惯量声光扫描激光微纳3D打印基础研究
- 批准号:52275429
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于光谱时空双编码的无扫描快照式非视域成像方法研究
- 批准号:62205287
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于光谱时空双编码的无扫描快照式非视域成像方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于电调超表面的宽带准无衍射波宽角调控与扫描天线研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
A-扫描拉曼光谱显微技术研究用于快速无标记生化成像
- 批准号:32250006
- 批准年份:2022
- 资助金额:299.00 万元
- 项目类别:专项项目