EAGER: Scanningless 3D Bioprinting of Multiple Biomaterials and Cells for Biomimetic Vascular Network
EAGER:用于仿生血管网络的多种生物材料和细胞的非扫描 3D 生物打印
基本信息
- 批准号:1644967
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Vascularization has been the bottleneck for engineering large-scale or highly metabolic tissues. Without vascular support, cellular viability and function of engineered tissues or organs will be compromised in very short time. Traditional biomanufacturing methods such as nozzle-based and ink-jet based 3D printing are often slow and have limited printing resolution for creating biomimetic vasculature. This EArly-concept Grant for Exploratory Research (EAGER) award supports fundamental research on a new biomanufacturing method that simultaneously offers the speed, the resolution, and the ability to process multiple biomaterials and cells to 3D print biomimetic vascular network. Results from this research will potentially transform the biomanufacturing field for future tissue and organ printing with biomimetic vascular network. Printing organs such as heart and liver will reduce the shortage of donor organs for transplantations and save lives. Additionally, the biomimetic in vitro tissue models could significantly benefit the pharmatheutical industry because they can be used in early drug screening for drug toxicity and efficacy testing.The new biomanufacturing method features ultraviolet light-induced hydrogel formation in a scanningless and continuous fashion for rapid 3D printing of biomimetic vascular network. The first research objective is to understand the effects of material composition and processing parameters on mechanical properties of the hydrogel scaffolds for the 3D printing process. To achieve this objective, glycidal methacrylate-hyaluronic acid and gelatin methacrylate will be synthesized as the hydrogel materials with different methacrylation ratios. Hydrogel scaffolds will be printed by varying material composition (such as molecular weight and concentration of the monomers) and processing parameters (such as ultraviolet light intensity and exposure time). Mechanical properties (such as stiffness and yield strength) of printed hydrogel scaffolds will be measured by a nanoindentor and dynamic mechanical analyzer. The second objective is to understand how scaffold shape and chemistry affect vascular network formation. To achieve this objective, scaffolds of different shapes including single tubes and branched tubes will be printed using different hydrogels (glycidal methacrylate-hyaluronic acid and gelatin methacrylate). Human umbilical vein endothelial cells and mesenchymal stem cells will be encapsulated in the hydrogels to form a vascularized tissue. Vascular network formation such as lumens will be imaged using confocal microscopy.
血管化一直是工程化大规模或高代谢组织的瓶颈。如果没有血管的支持,工程化组织或器官的细胞活力和功能将在很短的时间内受到损害。传统的生物制造方法,如基于喷墨和基于喷墨的3D打印通常是缓慢的,并且具有用于创建仿生脉管系统的有限打印分辨率。EARLY概念探索性研究资助(EAGER)奖支持对一种新的生物制造方法的基础研究,该方法同时提供速度,分辨率和处理多种生物材料和细胞的能力,以3D打印仿生血管网络。这项研究的结果将潜在地改变生物制造领域,用于未来具有仿生血管网络的组织和器官打印。打印心脏和肝脏等器官将减少用于移植的捐赠器官短缺,挽救生命。此外,仿生体外组织模型可用于药物毒性和有效性测试的早期药物筛选,因此可为制药行业带来显著效益。这种新的生物制造方法的特点是以无扫描和连续的方式形成紫外光诱导的水凝胶,用于快速3D打印仿生血管网络。第一个研究目标是了解材料组成和工艺参数对3D打印过程中水凝胶支架机械性能的影响。为了实现这一目标,将合成甲基丙烯酸缩水甘油酯-透明质酸和明胶甲基丙烯酸酯作为具有不同甲基丙烯酸酯化比率的水凝胶材料。水凝胶支架将通过改变材料成分(如单体的分子量和浓度)和加工参数(如紫外光强度和曝光时间)来打印。打印的水凝胶支架的机械性能(如刚度和屈服强度)将通过纳米压痕仪和动态力学分析仪测量。第二个目标是了解支架形状和化学成分如何影响血管网络的形成。为了实现这一目标,将使用不同的水凝胶(甲基丙烯酸缩水甘油酯-透明质酸和甲基丙烯酸明胶)打印不同形状的支架,包括单管和支管。将人脐静脉内皮细胞和间充质干细胞包封在水凝胶中以形成血管化组织。将使用共聚焦显微镜对血管网络形成(如管腔)进行成像。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlled Growth Factor Release in 3D‐Printed Hydrogels
- DOI:10.1002/adhm.201900977
- 发表时间:2019-11
- 期刊:
- 影响因子:10
- 作者:Pengrui Wang;D. Berry;A. Moran;F. He;Trevor Tam;Luwen Chen;Shaochen Chen
- 通讯作者:Pengrui Wang;D. Berry;A. Moran;F. He;Trevor Tam;Luwen Chen;Shaochen Chen
Direct 3D bioprinting of cardiac micro-tissues mimicking native myocardium
- DOI:10.1016/j.biomaterials.2020.120204
- 发表时间:2020-10-01
- 期刊:
- 影响因子:14
- 作者:Liu, Justin;Miller, Kathleen;Chen, Shaochen
- 通讯作者:Chen, Shaochen
Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix
- DOI:10.1016/j.biomaterials.2018.12.009
- 发表时间:2019-02-01
- 期刊:
- 影响因子:14
- 作者:Yu, Claire;Ma, Xuanyi;Chen, Shaochen
- 通讯作者:Chen, Shaochen
A 3D Tissue-Printing Approach for Validation of Diffusion Tensor Imaging in Skeletal Muscle
- DOI:10.1089/ten.tea.2016.0438
- 发表时间:2017-09-01
- 期刊:
- 影响因子:4.1
- 作者:Berry, David B.;You, Shangting;Ward, Samuel R.
- 通讯作者:Ward, Samuel R.
Continuous Optical 3D Printing of Green Aliphatic Polyurethanes
- DOI:10.1021/acsami.6b12500
- 发表时间:2017-01-11
- 期刊:
- 影响因子:9.5
- 作者:Pyo, Sang-Hyun;Wang, Pengrui;Chen, Shaochen
- 通讯作者:Chen, Shaochen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaochen Chen其他文献
Challenges and opportunities in developing nanoparticles for detoxification
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:5.5
- 作者:
Maling Gou;Jana Zaidan;Kang Zhang;Shaochen Chen; - 通讯作者:
Toward a 3D bio-printed model of placental-villous transport: Growth and viability of human primary placental cell-types on hydrogel scaffolds
- DOI:
10.1016/j.placenta.2019.06.341 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:
- 作者:
Chandana Tekkatte;Claire Yu;Xuanyi Ma;Henry H. Hwang;Omar Farah;Ching-Wen Chang;Mana M. Parast;Shaochen Chen;Louise C. Laurent - 通讯作者:
Louise C. Laurent
Laser Processing of Natural Biomaterials
天然生物材料的激光加工
- DOI:
10.1007/978-3-642-41341-4_10 - 发表时间:
2013 - 期刊:
- 影响因子:4.6
- 作者:
Wande Zhang;Peter H. Chung;A. Zhang;Shaochen Chen - 通讯作者:
Shaochen Chen
Bioprinting of Complex Vascularized Tissues.
复杂血管组织的生物打印。
- DOI:
10.1007/978-1-0716-0611-7_14 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Wei Zhu;Claire Yu;Bingjie Sun;Shaochen Chen - 通讯作者:
Shaochen Chen
LASER MICROMACHINING OF A BIODEGRADABLE POLYMER
可生物降解聚合物的激光微加工
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
V. Kancharla;Shaochen Chen;D. Zamzow;D. P. Baldwin - 通讯作者:
D. P. Baldwin
Shaochen Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaochen Chen', 18)}}的其他基金
BRITE Fellow: Intelligent Nanoscale 3D Biomanufacturing for Human-on-a-Chip
BRITE 研究员:用于芯片人体的智能纳米级 3D 生物制造
- 批准号:
2135720 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Rapid 3D Bioprinting of Engineered Bionic Corals towards Scalable Biofuel Manufacturing
工程仿生珊瑚的快速 3D 生物打印可实现可扩展的生物燃料制造
- 批准号:
1907434 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Three-Dimensional Printing of Functional Nanobots for Precision Gene Delivery
EAGER:用于精确基因传递的功能纳米机器人的三维打印
- 批准号:
1937653 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Understanding Nano-Cardio Interactions Using 3D Bioprinted Human Heart Tissue
EAGER:使用 3D 生物打印人体心脏组织了解纳米心脏相互作用
- 批准号:
1903933 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Cybermanufacturing: Cloud-based, Rapid, Microscale 3D Bioprinting
EAGER:网络制造:基于云的快速微型 3D 生物打印
- 批准号:
1547005 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Cell Modulation Using Biomaterials with a Negative Poisson's Ratio
使用具有负泊松比的生物材料进行细胞调节
- 批准号:
1332681 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Nano-/femtosecond Laser Processing of Gas Impregnated Polymer for Biomedical Applications
合作研究:用于生物医学应用的气体浸渍聚合物的纳秒/飞秒激光加工
- 批准号:
1130894 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SNM: Continuous and Scalable Nanomanufacturing for 3-Dimensional Functional Biomedical Devices
SNM:连续且可扩展的 3 维功能生物医学设备纳米制造
- 批准号:
1120795 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Surface Plasmon-Assisted Nanolithography
表面等离子体辅助纳米光刻
- 批准号:
1109591 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Massive Parallel Laser Direct-Write of Sub-micron Dent Array for Quantum Leap of Fatigue Performance
合作研究:大规模并行激光直写亚微米凹痕阵列,实现疲劳性能的量子飞跃
- 批准号:
1106487 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




