EAGER: Cybermanufacturing: Cloud-based, Rapid, Microscale 3D Bioprinting

EAGER:网络制造:基于云的快速微型 3D 生物打印

基本信息

  • 批准号:
    1547005
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Precision tissue engineering is an emerging field that applies the principles of engineering and life sciences to the development of biological substitutes that restore, maintain or improve tissue function or a whole organ. The success of tissue engineering relies on the ability to manufacture/print complex, functional three-dimensional structures with seeded/encapsulated live cells. Current printing techniques are typically very slow, have limited printing resolution for cells, and are limited in their ability to fully replicate the in vivo environment, either in terms of the material used, the distribution of cells, or the complex geometries of the native physiology. These bioprinters are usually individual lab/fab based, not accessible to the broader scientific communities. This EArly-concept Grant for Exploratory Research (EAGER) award supports fundamental research to provide needed knowledge for the development of a cloud-based, rapid, 3D bioprinting platform that creates functional tissues with application to the emerging field of precision medicine. By using the anticipated system, a research team will be able to create specialized tools and share critical data with the biomedical science community through the cloud. Therefore, results from this research will benefit the U.S. economy and society. This research involves several disciplines including manufacturing, biomaterials science, cloud computing, and precision medicine. The multi-disciplinary approach will help broaden participation of underrepresented groups in research and positively impact engineering education.This project presents a simple and rapid fabrication approach for encapsulating cells within complex 3D geometries using a combination of digital printing and a naturally-derived gelatin-based hydrogel. By providing scanless printing, the fabricated structures will not exhibit the planar artifacts induced by traditional drop-by-drop and layer-by-layer fabrication approaches that involve discrete movement of the linear stage to a new position. Such a bioprinting platform can create much better mechanical integrity of the tissue construct than a traditional bioplotter. The macromer solution used during fabrication can easily be changed to incorporate a variety of bioactive molecules, such as growth factors, drugs, or genetic cues along with multiple cell types. This work fills a large knowledge gap in the field for developing a scalable technique for rapidly fabricating complex 3D cell-laden scaffolds for precision medicine. The cloud-based software architecture will provide a modular, extensible, remotely accessible, and user-friendly "web app" to enhance the collaborative potential of the bioprinting platform across multiple users. The research team will perform experiments and simulation to understand the mechanism of light interactions with polymer chains, and establish relationships between process parameters and mechanical properties of the 3D-printed tissue scaffolds.
精密组织工程是一个新兴领域,它将工程和生命科学的原理应用于生物替代品的开发,以恢复、维持或改善组织功能或整个器官。组织工程的成功依赖于用种子/包被活细胞制造/打印复杂的、功能性的三维结构的能力。当前的打印技术通常非常缓慢,对细胞的打印分辨率有限,并且在完全复制体内环境的能力方面受到限制,无论是在使用的材料,细胞分布还是天然生理的复杂几何形状方面。这些生物打印机通常是单独的实验室/工厂为基础,不能进入更广泛的科学界。这项探索性研究(EAGER)早期概念资助支持基础研究,为基于云的快速3D生物打印平台的开发提供所需的知识,该平台可创建用于新兴精准医学领域的功能组织。通过使用预期的系统,研究团队将能够创建专门的工具,并通过云与生物医学科学界共享关键数据。因此,这项研究的结果将有利于美国的经济和社会。这项研究涉及多个学科,包括制造、生物材料科学、云计算和精准医学。多学科方法将有助于扩大代表性不足的群体在研究中的参与,并对工程教育产生积极影响。该项目提出了一种简单快速的制造方法,将细胞封装在复杂的3D几何形状中,使用数字印刷和自然衍生的明胶基水凝胶相结合。通过提供无扫描打印,制造的结构将不会表现出由传统的逐点和逐层制造方法引起的平面伪影,这些方法涉及线性阶段到新位置的离散运动。这样的生物打印平台可以比传统的生物绘图仪创造更好的组织结构的机械完整性。在制造过程中使用的大分子溶液可以很容易地改变,以加入各种生物活性分子,如生长因子、药物或遗传线索以及多种细胞类型。这项工作填补了该领域的巨大知识空白,开发了一种可扩展的技术,用于快速制造精密医学的复杂3D细胞负载支架。基于云的软件架构将提供模块化、可扩展、远程访问和用户友好的“web应用程序”,以增强生物打印平台跨多个用户的协作潜力。研究团队将通过实验和模拟来了解光与聚合物链相互作用的机理,并建立3d打印组织支架的工艺参数与力学性能之间的关系。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix
  • DOI:
    10.1016/j.biomaterials.2018.12.009
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    14
  • 作者:
    Yu, Claire;Ma, Xuanyi;Chen, Shaochen
  • 通讯作者:
    Chen, Shaochen
Biomimetic 3D-printed scaffolds for spinal cord injury repair
  • DOI:
    10.1038/s41591-018-0296-z
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    82.9
  • 作者:
    Koffler, Jacob;Zhu, Wei;Tuszynski, Mark H.
  • 通讯作者:
    Tuszynski, Mark H.
Rapid continuous 3D printing of customizable peripheral nerve guidance conduits
  • DOI:
    10.1016/j.mattod.2018.04.001
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    24.2
  • 作者:
    Zhu, Wei;Tringale, Kathryn R.;Chen, Shaochen
  • 通讯作者:
    Chen, Shaochen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaochen Chen其他文献

Challenges and opportunities in developing nanoparticles for detoxification
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Maling Gou;Jana Zaidan;Kang Zhang;Shaochen Chen;
  • 通讯作者:
Toward a 3D bio-printed model of placental-villous transport: Growth and viability of human primary placental cell-types on hydrogel scaffolds
  • DOI:
    10.1016/j.placenta.2019.06.341
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chandana Tekkatte;Claire Yu;Xuanyi Ma;Henry H. Hwang;Omar Farah;Ching-Wen Chang;Mana M. Parast;Shaochen Chen;Louise C. Laurent
  • 通讯作者:
    Louise C. Laurent
Laser Processing of Natural Biomaterials
天然生物材料的激光加工
  • DOI:
    10.1007/978-3-642-41341-4_10
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Wande Zhang;Peter H. Chung;A. Zhang;Shaochen Chen
  • 通讯作者:
    Shaochen Chen
Bioprinting of Complex Vascularized Tissues.
复杂血管组织的生物打印。
  • DOI:
    10.1007/978-1-0716-0611-7_14
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Zhu;Claire Yu;Bingjie Sun;Shaochen Chen
  • 通讯作者:
    Shaochen Chen
LASER MICROMACHINING OF A BIODEGRADABLE POLYMER
可生物降解聚合物的激光微加工
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Kancharla;Shaochen Chen;D. Zamzow;D. P. Baldwin
  • 通讯作者:
    D. P. Baldwin

Shaochen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaochen Chen', 18)}}的其他基金

BRITE Fellow: Intelligent Nanoscale 3D Biomanufacturing for Human-on-a-Chip
BRITE 研究员:用于芯片人体的智能纳米级 3D 生物制造
  • 批准号:
    2135720
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Rapid 3D Bioprinting of Engineered Bionic Corals towards Scalable Biofuel Manufacturing
工程仿生珊瑚的快速 3D 生物打印可实现可扩展的生物燃料制造
  • 批准号:
    1907434
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Three-Dimensional Printing of Functional Nanobots for Precision Gene Delivery
EAGER:用于精确基因传递的功能纳米机器人的三维打印
  • 批准号:
    1937653
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Understanding Nano-Cardio Interactions Using 3D Bioprinted Human Heart Tissue
EAGER:使用 3D 生物打印人体心脏组织了解纳米心脏相互作用
  • 批准号:
    1903933
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Scanningless 3D Bioprinting of Multiple Biomaterials and Cells for Biomimetic Vascular Network
EAGER:用于仿生血管网络的多种生物材料和细胞的非扫描 3D 生物打印
  • 批准号:
    1644967
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Cell Modulation Using Biomaterials with a Negative Poisson's Ratio
使用具有负泊松比的生物材料进行细胞调节
  • 批准号:
    1332681
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Nano-/femtosecond Laser Processing of Gas Impregnated Polymer for Biomedical Applications
合作研究:用于生物医学应用的气体浸渍聚合物的纳秒/飞秒激光加工
  • 批准号:
    1130894
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SNM: Continuous and Scalable Nanomanufacturing for 3-Dimensional Functional Biomedical Devices
SNM:连续且可扩展的 3 维功能生物医学设备纳米制造
  • 批准号:
    1120795
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Surface Plasmon-Assisted Nanolithography
表面等离子体辅助纳米光刻
  • 批准号:
    1109591
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Massive Parallel Laser Direct-Write of Sub-micron Dent Array for Quantum Leap of Fatigue Performance
合作研究:大规模并行激光直写亚微米凹痕阵列,实现疲劳性能的量子飞跃
  • 批准号:
    1106487
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

FMRG: Artificial Intelligence Driven Cybermanufacturing of Quantum Material Architectures
FMRG:人工智能驱动的量子材料架构网络制造
  • 批准号:
    2240407
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FMSG: Cyber: Resilient and Reliable Cyber-Physical-Human-Machine Teams: Toward Future of Cybermanufacturing
FMSG:网络:有弹性且可靠的网络物理人机团队:迈向网络制造的未来
  • 批准号:
    2134367
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FMSG: Cyber: Cybermanufacturing of Wide-Bandgap Semiconductor Devices Enabled by Simulation Augmented Machine Learning
FMSG:网络:通过仿真增强机器学习实现宽带隙半导体器件的网络制造
  • 批准号:
    2134374
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FMSG: Internet of People and Things Bridging manual to semiautomated processes through Cybermanufacturing Collaborative Intelligence
FMSG:人与物联网通过网络制造协作智能将手动流程与半自动化流程连接起来
  • 批准号:
    2036873
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FMNet: Future Manufacturing: A Network for Cybermanufacturing in Machining
FMNet:未来制造:机械加工网络制造网络
  • 批准号:
    2036806
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FMRG: Artificial Intelligence Driven Cybermanufacturing of Quantum Material Architectures
FMRG:人工智能驱动的量子材料架构网络制造
  • 批准号:
    2036359
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CM/Collaborative Research: CloudMEMS: Cybermanufacturing of Micro-Electro-Mechanical Systems
CM/合作研究:CloudMEMS:微机电系统的网络制造
  • 批准号:
    1912749
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
REU Site on Cybermanufacturing
REU 网络制造网站
  • 批准号:
    1757882
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Targeted Infusion Project: Infuse Cybermanufacturing Concepts to Manufacturing Processes and Automation Courses
有针对性的注入项目:将网络制造概念注入制造流程和自动化课程
  • 批准号:
    1818655
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER/Cybermanufacturing: Modular System Design for CyberManufacturing of Customized Apparel
EAGER/Cyber​​manufacturing:定制服装网络制造的模块化系统设计
  • 批准号:
    1832443
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了