CPS: Synergy: Collaborative Research: Cyber-Physical Sensing, Modeling, and Control with Augmented Reality for Smart Manufacturing Workforce Training and Operations Management

CPS:协同:协作研究:用于智能制造劳动力培训和运营管理的网络物理传感、建模和增强现实控制

基本信息

  • 批准号:
    1646065
  • 负责人:
  • 金额:
    $ 19.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-01 至 2021-01-31
  • 项目状态:
    已结题

项目摘要

Smart manufacturing integrates information, technology, and human ingenuity to inspire the next revolution in the manufacturing industry. Manufacturing has been identified as a key strategic investment area by the U.S. government, private sector, and university leaders to spur innovation and keep America competitive. However, the lack of new methodologies and tools is challenging continuous innovation in the smart manufacturing industry. This award supports fundamental research to develop a cyber-physical sensing, modeling, and control infrastructure, coupled with augmented reality, to significantly improve the efficiency of future workforce training, performance of operations management, safety and comfort of workers for smart manufacturing. Results from this research are expected to transform the practice of worker-machine-task coordination and provide a powerful tool for operations management. This research involves several disciplines including sensing, data analytics, modeling, control, augmented reality, and workforce training and will provide unique interdisciplinary training opportunities for students and future manufacturing engineers. An effective way for manufacturers to tackle and outpace the increasing complexity of product designs and ever-shortening product lifecycles is to effectively develop and assist the workforce. Yet the current management of manufacturing workforce systems relies mostly on the traditional methods of data collection and modeling, such as subjective observations and after-the-fact statistics of workforce performance, which has reached a bottleneck in effectiveness. The goal of this project is to investigate an integrated set of cyber-physical system methods and tools to sense, understand, characterize, model, and optimize the learning and operation of manufacturing workers, so as to achieve significantly improved efficiency in worker training, effectiveness of behavioral operations management, and safety of front-line workers. The research team will instrument a suite of sensors to gather real-time data about individual workers, worker-machine interactions, and the working environment,develop advanced methods and tools to track and understand workers' actions and physiological status, and detect their knowledge and skill deficiencies or assistance needs in real time. The project will also establish mathematical models that encode the manufacturing process in the research sensing and analysis framework, characterize the efficiency of worker-machine-task coordination, model the learning curves of individual workers, investigate various multi-modal augmented reality-based visualization, guidance, control, and intervention schemes to improve task efficiency and worker safety, and deploy, test, and conduct comprehensive performance assessments of the Researched technologies.
智能制造融合了信息、技术和人类的聪明才智,激发了制造业的下一次革命。制造业已被美国政府、私营部门和大学领导人确定为一个关键的战略投资领域,以刺激创新并保持美国的竞争力。然而,缺乏新的方法和工具正在挑战智能制造行业的持续创新。该奖项支持基础研究,以开发网络物理传感,建模和控制基础设施,再加上增强现实,以显着提高未来劳动力培训的效率,运营管理的性能,工人的安全性和舒适性,以实现智能制造。本研究的结果可望改变人-机-任务协调的实践,并为作业管理提供一个强有力的工具。这项研究涉及多个学科,包括传感,数据分析,建模,控制,增强现实和劳动力培训,并将为学生和未来的制造工程师提供独特的跨学科培训机会。制造商应对产品设计日益复杂和产品生命周期不断缩短的有效方法是有效地开发和协助员工。然而,目前的制造业劳动力系统的管理大多依赖于传统的数据收集和建模方法,如主观观察和事后统计的劳动力绩效,这已经达到了有效性的瓶颈。该项目的目标是研究一套集成的网络物理系统方法和工具,以感知、理解、表征、建模和优化制造工人的学习和操作,从而显著提高工人培训的效率、行为操作管理的有效性和一线工人的安全性。该研究团队将配备一套传感器,以收集有关单个工人,工人-机器交互和工作环境的实时数据,开发先进的方法和工具来跟踪和了解工人的行动和生理状态,并真实的时间检测他们的知识和技能不足或援助需求。该项目还将建立数学模型,在研究传感和分析框架中对制造过程进行编码,表征工人-机器-任务协调的效率,对单个工人的学习曲线进行建模,研究各种基于多模态增强现实的可视化,指导,控制和干预方案,以提高任务效率和工人安全,并部署,测试,并对所研究的技术进行全面的性能评估。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pedestrian Motion Trajectory Prediction With Stereo-Based 3D Deep Pose Estimation and Trajectory Learning
利用基于立体的 3D 深度姿势估计和轨迹学习进行行人运动轨迹预测
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Jianqi Zhong, Hao Sun
  • 通讯作者:
    Jianqi Zhong, Hao Sun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhihai He其他文献

Functional Assessment Technologies
功能评估技术
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Rantz;M. Skubic;K. Burks;Jie Yu;G. Demiris;B. Hensel;G. Alexander;Zhihai He;H. Tyrer;M. Hamilton;Jia Lee;Marybeth Brown
  • 通讯作者:
    Marybeth Brown
Robust Generalized Low-Rank Decomposition of Multimatrices for Image Recovery
用于图像恢复的鲁棒广义低阶多矩阵分解
  • DOI:
    10.1109/tmm.2016.2638624
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Hengyou Wang;Yigang Cen;Zhihai He;Ruizhen Zhao;Yi Cen;Fengzhen Zhang
  • 通讯作者:
    Fengzhen Zhang
Hydration and microstructure of concrete containing high volume lithium slag
高掺量锂渣混凝土的水化及微观结构
  • DOI:
    10.1166/mex.2020.1644
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Zhihai He;Jingyu Chang;Shigui Du;Chaofeng Liang;Baoju Liu
  • 通讯作者:
    Baoju Liu
Multi-scale embedded descriptor for shape classification
用于形状分类的多尺度嵌入描述符
  • DOI:
    10.1016/j.jvcir.2014.08.005
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Huang;T. Han;Zhihai He
  • 通讯作者:
    Zhihai He
Semi-supervised learning for robust car windshield tracking and monitoring in live traffic videos
实时交通视频中强大的汽车挡风玻璃跟踪和监控的半监督学习

Zhihai He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhihai He', 18)}}的其他基金

US Ignite: Focus Area 1: A Networked Virtual Reality Platform for Immersive Online Social Learning of Youth with Autism Spectrum Disorders
US Ignite:重点领域 1:为患有自闭症谱系障碍的青少年提供沉浸式在线社交学习的网络虚拟现实平台
  • 批准号:
    1647213
  • 财政年份:
    2017
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Cyber-Physical Sensing, Modeling, and Control for Large-Scale Wastewater Reuse and Algal Biomass Production
CPS:协同:协作研究:大规模废水回用和藻类生物质生产的网络物理传感、建模和控制
  • 批准号:
    1544794
  • 财政年份:
    2015
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
CyberSEES: Type 2: Collaborative Research: Cyber-infrastructure and Technologies to Support Large-Scale Wildlife Monitoring and Research for Wildlife and Ecology Sustainability
Cyber​​SEES:类型 2:协作研究:支持大规模野生动物监测以及野生动物和生态可持续性研究的网络基础设施和技术
  • 批准号:
    1539389
  • 财政年份:
    2015
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: ABI Innovation: Computational and Informatics Tools for Supporting Collaborative Wildlife Monitoring and Research
协作研究:ABI 创新:支持协作野生动物监测和研究的计算和​​信息学工具
  • 批准号:
    1062354
  • 财政年份:
    2011
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Processes Determining the Abundance of Terrestrial Wildlife Communities Across Large Scales
合作研究:大规模确定陆地野生动物群落丰度的过程
  • 批准号:
    1065749
  • 财政年份:
    2011
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
SIRG: COLLABORATIVE RESEARCH: DeerNet-Wireless Sensor Networking for Wildlife Behavior Analysis and Interaction Modeling
SIRG:协作研究:用于野生动物行为分析和交互建模的 DeerNet-无线传感器网络
  • 批准号:
    0529082
  • 财政年份:
    2005
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Continuing Grant

相似海外基金

CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
  • 批准号:
    1936599
  • 财政年份:
    2019
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: DEUS: Distributed, Efficient, Ubiquitous and Secure Data Delivery Using Autonomous Underwater Vehicles
CPS:协同:协作研究:DEUS:使用自主水下航行器进行分布式、高效、无处不在和安全的数据传输
  • 批准号:
    1853257
  • 财政年份:
    2018
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
  • 批准号:
    1645578
  • 财政年份:
    2018
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
  • 批准号:
    1646235
  • 财政年份:
    2018
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
  • 批准号:
    1854321
  • 财政年份:
    2018
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Foundations of Secure Cyber-Physical Systems of Systems
CPS:协同:协作研究:安全网络物理系统的基础
  • 批准号:
    1901728
  • 财政年份:
    2018
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: An Executable Distributed Medical Best Practice Guidance (EMBG) System for End-to-End Emergency Care from Rural to Regional Center
CPS:TTP 选项:协同:协作研究:用于从农村到区域中心的端到端紧急护理的可执行分布式医疗最佳实践指导 (EMBG) 系统
  • 批准号:
    1842710
  • 财政年份:
    2018
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Continuing Grant
CPS: Medium: Collaborative Research: Synergy: Augmented reality for control of reservation-based intersections with mixed autonomous-non autonomous flows
CPS:中:协作研究:协同作用:用于控制具有混合自主-非自主流的基于预留的交叉口的增强现实
  • 批准号:
    1739964
  • 财政年份:
    2018
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: MRI Powered & Guided Tetherless Effectors for Localized Therapeutic Interventions
CPS:协同作用:协作研究:MRI 驱动
  • 批准号:
    1646566
  • 财政年份:
    2017
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Standard Grant
Synergy: Collaborative: CPS-Security: End-to-End Security for the Internet of Things
协同:协作:CPS-安全:物联网的端到端安全
  • 批准号:
    1822332
  • 财政年份:
    2017
  • 资助金额:
    $ 19.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了