EAGER: Collaborative: Algorithmic Framework for Anomaly Detection in Interdependent Networks
EAGER:协作:相互依赖网络中异常检测的算法框架
基本信息
- 批准号:1646890
- 负责人:
- 金额:$ 9.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern critical infrastructure relies on successful interdependent function among many different types of networks. For example, the Internet depends on access to the power grid, which in turn depends on the power-grid communication network and the energy production network. For this reason, network science researchers have begun examining the robustness of critical infrastructure as a network of networks, or a multilayer network. Research in network anomaly detection systems has focused on single network structures (specifically, the Internet as a single network). Among these methods, some promising detection algorithms rely on decentralized and distributed coordination among many participants, improving meaningfully over results from independent parallel and centralized algorithms. The project involves rigorous analysis of the different challenges and opportunities for anomaly detection posed by multilayer networks relative to single network structures, with a particular focus on how cross-layer information can be effectively used to improve both efficiency and detection as well as how cross-layer threats can create vulnerabilities. The project develops a general framework that can be used in multiple applications to detect large-scale threats to information flow for enhanced security. This has the potential for significant benefit to society through its contribution to enhanced resiliency in the nation's cyber infrastructure and other interdependent critical infrastructure such as the power grid. The combination of concepts and ideas from the cybersecurity community with the network science community will help researchers in both fields to better understand the realistic problems and be aware of each other's problems, results, and techniques.
现代关键基础设施依赖于许多不同类型网络之间成功的相互依赖的功能。例如,互联网依赖于电网接入,而电网接入又依赖于电网通信网络和能源生产网络。出于这个原因,网络科学研究人员已经开始将关键基础设施作为网络网络或多层网络来考察其稳健性。网络异常检测系统的研究主要集中在单一的网络结构(具体地说,将互联网作为一个单一的网络)。在这些方法中,一些有前景的检测算法依赖于多个参与者之间的分散和分布式协调,相对于独立的并行和集中式算法的结果有了很大的改善。该项目涉及严格分析多层网络相对于单一网络结构对异常检测带来的不同挑战和机遇,特别侧重于如何有效地利用跨层信息来提高效率和检测,以及跨层威胁如何产生漏洞。该项目开发了一个通用框架,可以在多个应用程序中使用,以检测信息流的大规模威胁,以增强安全性。这有可能为社会带来重大好处,因为它有助于提高国家网络基础设施和其他相互依存的关键基础设施(如电网)的复原力。网络安全界和网络科学界的概念和思想的结合将有助于这两个领域的研究人员更好地了解现实问题,并了解彼此的问题、结果和技术。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anomaly detection through information sharing under different topologies
通过不同拓扑下的信息共享进行异常检测
- DOI:10.1186/s13635-017-0056-5
- 发表时间:2017
- 期刊:
- 影响因子:3.6
- 作者:Gallos, Lazaros K.;Korczyński, Maciej;Fefferman, Nina H.
- 通讯作者:Fefferman, Nina H.
Propinquity drives the emergence of network structure and density
- DOI:10.1073/pnas.1900219116
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:L. Gallos;S. Havlin;H. Stanley;N. Fefferman
- 通讯作者:L. Gallos;S. Havlin;H. Stanley;N. Fefferman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nina Fefferman其他文献
Vital rate sensitivity analysis as a tool for assessing management actions for the desert tortoise
- DOI:
10.1016/j.biocon.2009.06.025 - 发表时间:
2009-11-01 - 期刊:
- 影响因子:
- 作者:
J. Michael Reed;Nina Fefferman;Roy C. Averill-Murray - 通讯作者:
Roy C. Averill-Murray
DialectDecoder: Human/machine teaming for bird song classification and anomaly detection
DialectDecoder:人机协作进行鸟鸣分类和异常检测
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.1
- 作者:
Brittany Story;Patrick Gillespie;Graham Derryberry;Elizabeth Derryberry;Nina Fefferman;Vasileios Maroulas - 通讯作者:
Vasileios Maroulas
Nina Fefferman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nina Fefferman', 18)}}的其他基金
PIPP Phase I: Predicting Emergence in Multidisciplinary Pandemic Tipping-points (PREEMPT)
PIPP 第一阶段:预测多学科流行病临界点的出现 (PREEMPT)
- 批准号:
2200140 - 财政年份:2022
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: A Workshop on Pre-emergence and the Predictions of Rare Events in Multiscale, Complex, Dynamical Systems
协作研究:多尺度、复杂、动态系统中出现前和罕见事件的预测研讨会
- 批准号:
2114651 - 财政年份:2021
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
RAPID: Modeling the Coupled Social and Epidemiological Networks that Determine the Success of Behavioral Interventions on Limiting Spread of COVID-19
RAPID:对耦合的社会和流行病学网络进行建模,该网络决定限制 COVID-19 传播的行为干预措施是否成功
- 批准号:
2028710 - 财政年份:2020
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
RAPID: Modeling Zika Control Effectiveness with Feedback in Risk Perception and Associated Demand across Scales of Intervention
RAPID:通过风险感知反馈和跨干预规模的相关需求来建模寨卡控制有效性
- 批准号:
1640951 - 财政年份:2016
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Learning about Infectious Diseases through Online Participation in a Virtual Epidemic
RAPID:协作研究:通过在线参与虚拟流行病来了解传染病
- 批准号:
1508981 - 财政年份:2015
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant