PIPP Phase I: Predicting Emergence in Multidisciplinary Pandemic Tipping-points (PREEMPT)

PIPP 第一阶段:预测多学科流行病临界点的出现 (PREEMPT)

基本信息

  • 批准号:
    2200140
  • 负责人:
  • 金额:
    $ 99.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Pandemics arise from the confluence of many contributing factors. These factors may be individually inconsequential but become critical when acting together, and a complex set of seemingly unrelated factors can result in a perfect storm for pandemic emergence. Yet prevailing approaches to predicting pandemic emergence remain focused on disciplinary investigations of individual or subsets of factors. Preparing for and preventing the next pandemic will require multidisciplinary approaches that leverage knowledge of complex interdependencies across scales from molecular to social and from individual diagnosis to global surveillance. This project assembles a multi-disciplinary team of scientists, representing expertise spanning the gamut from basic biology, to social, behavioral, and economic sciences, to engineering, computer, and information sciences, to focus on understanding how to identify, recognize, and predict when emerging disease threats create a perfect storm of factors that cause an otherwise localized outbreak to “tip over” into a pandemic. The project team will work together to leverage their collective diversity of expertise, experience, and perspective to innovate a collaborative framework for knitting together disciplinary pursuits into a complete, multifaceted, and predictive understanding of pandemic tipping points. Going beyond the confines of this project, the resulting framework will serve as a blueprint for all institutions dedicated to the discovery and analysis of complex linkages and thus will improve capacity to predict and prevent coming pandemics and other emergent threats to the modern world. The fact that pandemic tipping points are multifactorial makes their study fundamentally more challenging than system- or discipline-specific tipping points. The project will develop a blueprint for an institution dedicated to advancing understanding and analysis of systems with dynamics that require interrogation by multiple disciplines. The driving hypothesis for the institute is that the greatest barriers to multidisciplinary insights exist when disciplinary researchers fail to converge on shared intuition for the value other fields could provide in addressing complex research questions. The framework directly addresses this challenge by employing a Give-Take methodology: to investigate multidisciplinary research hypotheses, project teams of researchers will assemble via a bidirectional process. Researchers will identify (a – “giving”) hypotheses from other fields their own discipline could meaningfully impact and (b – “taking”) disciplines from which they anticipate useful input for their own hypotheses, and teams will include both directions of identification. This innovative framework improves the capacity for researchers in disparate fields to better recognize their interdependence and eliminates the need for researchers to understand other fields before benefiting from or contributing to investigations. The research will apply these methodologies to the complex challenge of multidisciplinary tipping points in the form of a set of case studies that will directly support our ability to address many of the complex and interconnected challenges in pandemic preparedness and response.This award is supported by the cross-directorate Predictive Intelligence for Pandemic Prevention Phase I (PIPP) program, which is jointly funded by the Directorates for Biological Sciences (BIO); Computer, Information Science and Engineering (CISE); Engineering (ENG) and Social, Behavioral and Economic Sciences (SBE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大流行病是许多促成因素共同作用的结果。这些因素可能是无关紧要的,但当它们共同作用时,就会变得至关重要,而一系列看似无关的复杂因素可能会导致大流行出现的完美风暴。然而,预测大流行出现的流行方法仍然集中在对个别或部分因素的学科调查上。准备和预防下一次大流行将需要多学科的方法,利用从分子到社会,从个体诊断到全球监测的复杂相互依存关系的知识。该项目汇集了一个多学科的科学家团队,代表了从基础生物学到社会,行为和经济科学,再到工程,计算机和信息科学的专业知识,专注于了解如何识别,识别和预测新兴疾病威胁何时产生一场完美的因素风暴,导致局部爆发“翻转”成大流行。项目团队将共同努力,利用他们的专业知识、经验和观点的集体多样性,创新一个协作框架,将学科追求编织成一个完整的、多方面的和对流行病临界点的预测性理解。超出本项目的范围,由此产生的框架将作为所有致力于发现和分析复杂联系的机构的蓝图,从而提高预测和预防即将发生的流行病和对现代世界的其他紧急威胁的能力。 大流行临界点是多因素的,这一事实使他们的研究从根本上比系统或学科特定的临界点更具挑战性。该项目将制定一个机构的蓝图,致力于推进对需要多学科审问的动态系统的理解和分析。该研究所的驱动假设是,当学科研究人员未能就其他领域在解决复杂研究问题时可能提供的价值达成共识时,存在着多学科见解的最大障碍。该框架通过采用给予-接受方法直接解决了这一挑战:为了调查多学科研究假设,研究人员的项目团队将通过双向过程进行组装。研究人员将确定(a -“给予”)他们自己的学科可能有意义地影响的其他领域的假设,以及(B -“接受”)他们期望为自己的假设提供有用输入的学科,团队将包括两个方向的识别。这一创新框架提高了不同领域研究人员的能力,使他们能够更好地认识到相互依存关系,并消除了研究人员在受益于调查或为调查做出贡献之前了解其他领域的必要性。该研究将以一系列案例研究的形式将这些方法应用于多学科临界点的复杂挑战,这些案例研究将直接支持我们解决大流行准备和应对中许多复杂和相互关联的挑战的能力。该奖项由跨部门的大流行预防预测情报第一阶段(PIPP)计划支持,该项目由生物科学局(BIO)、计算机、信息科学与工程局(CISE)、工程(ENG)和社会,行为与经济科学(SBE)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nina Fefferman其他文献

Vital rate sensitivity analysis as a tool for assessing management actions for the desert tortoise
  • DOI:
    10.1016/j.biocon.2009.06.025
  • 发表时间:
    2009-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    J. Michael Reed;Nina Fefferman;Roy C. Averill-Murray
  • 通讯作者:
    Roy C. Averill-Murray
DialectDecoder: Human/machine teaming for bird song classification and anomaly detection
DialectDecoder:人机协作进行鸟鸣分类和异常检测
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Brittany Story;Patrick Gillespie;Graham Derryberry;Elizabeth Derryberry;Nina Fefferman;Vasileios Maroulas
  • 通讯作者:
    Vasileios Maroulas

Nina Fefferman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nina Fefferman', 18)}}的其他基金

Collaborative Research: A Workshop on Pre-emergence and the Predictions of Rare Events in Multiscale, Complex, Dynamical Systems
协作研究:多尺度、复杂、动态系统中出现前和罕见事件的预测研讨会
  • 批准号:
    2114651
  • 财政年份:
    2021
  • 资助金额:
    $ 99.98万
  • 项目类别:
    Standard Grant
RAPID: Modeling the Coupled Social and Epidemiological Networks that Determine the Success of Behavioral Interventions on Limiting Spread of COVID-19
RAPID:对耦合的社会和流行病学网络进行建模,该网络决定限制 COVID-19 传播的行为干预措施是否成功
  • 批准号:
    2028710
  • 财政年份:
    2020
  • 资助金额:
    $ 99.98万
  • 项目类别:
    Standard Grant
RAPID: Modeling Zika Control Effectiveness with Feedback in Risk Perception and Associated Demand across Scales of Intervention
RAPID:通过风险感知反馈和跨干预规模的相关需求来建模寨卡控制有效性
  • 批准号:
    1640951
  • 财政年份:
    2016
  • 资助金额:
    $ 99.98万
  • 项目类别:
    Standard Grant
EAGER: Collaborative: Algorithmic Framework for Anomaly Detection in Interdependent Networks
EAGER:协作:相互依赖网络中异常检测的算法框架
  • 批准号:
    1646890
  • 财政年份:
    2016
  • 资助金额:
    $ 99.98万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Learning about Infectious Diseases through Online Participation in a Virtual Epidemic
RAPID:协作研究:通过在线参与虚拟流行病来了解传染病
  • 批准号:
    1508981
  • 财政年份:
    2015
  • 资助金额:
    $ 99.98万
  • 项目类别:
    Standard Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
  • 批准号:
    61675216
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Phase-type分布的多状态系统可靠性模型研究
  • 批准号:
    71501183
  • 批准年份:
    2015
  • 资助金额:
    17.4 万元
  • 项目类别:
    青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
  • 批准号:
    51201142
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
  • 批准号:
    11101428
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
  • 批准号:
    19374069
  • 批准年份:
    1993
  • 资助金额:
    6.4 万元
  • 项目类别:
    面上项目

相似海外基金

TOOLKIT FOR LEARNING AND PREDICTING ALCOHOL USE PATTERNS (SBIR PHASE II, TOPIC 019)
学习和预测酒精使用模式的工具包(SBIR 第二阶段,主题 019)
  • 批准号:
    10953998
  • 财政年份:
    2023
  • 资助金额:
    $ 99.98万
  • 项目类别:
Accounting for Temperature Effects When Predicting Molecular Weight and Composition Distribution for Gas-Phase Polyethylene Produced Using a Multi-Site Catalyst
预测使用多位点催化剂生产的气相聚乙烯的分子量和组成分布时考虑温度影响
  • 批准号:
    575986-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 99.98万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
A shock-fitting approach for predicting the two-phase transient flows in stormwater systems (SWS) with best management practices (BMP)
利用最佳管理实践 (BMP) 预测雨水系统 (SWS) 中两相瞬变流的冲击拟合方法
  • 批准号:
    RGPIN-2020-06979
  • 财政年份:
    2022
  • 资助金额:
    $ 99.98万
  • 项目类别:
    Discovery Grants Program - Individual
PIPP Phase I: Predicting and Preventing Epidemic to Pandemic Transitions
PIPP 第一阶段:预测和预防流行病向大流行病的转变
  • 批准号:
    2200052
  • 财政年份:
    2022
  • 资助金额:
    $ 99.98万
  • 项目类别:
    Standard Grant
CAREER: Finite Temperature Electronic Structure Methods for Predicting Material Phase Diagrams
职业:预测材料相图的有限温度电子结构方法
  • 批准号:
    2046744
  • 财政年份:
    2021
  • 资助金额:
    $ 99.98万
  • 项目类别:
    Standard Grant
A shock-fitting approach for predicting the two-phase transient flows in stormwater systems (SWS) with best management practices (BMP)
利用最佳管理实践 (BMP) 预测雨水系统 (SWS) 中两相瞬变流的冲击拟合方法
  • 批准号:
    RGPIN-2020-06979
  • 财政年份:
    2021
  • 资助金额:
    $ 99.98万
  • 项目类别:
    Discovery Grants Program - Individual
A shock-fitting approach for predicting the two-phase transient flows in stormwater systems (SWS) with best management practices (BMP)
利用最佳管理实践 (BMP) 预测雨水系统 (SWS) 中两相瞬变流的冲击拟合方法
  • 批准号:
    RGPIN-2020-06979
  • 财政年份:
    2020
  • 资助金额:
    $ 99.98万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了