EAGER: Physical Layer Security for the Internet of Things

EAGER:物联网的物理层安全

基本信息

  • 批准号:
    1647198
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Cybersecurity is a one of the most pressing issues in technology development and deployment today, and is a serious societal concern. Wireless networks are particularly challenging in this regard. The Internet of Things is an emerging aspect of wireless communications, which is expected to interconnect hundreds of billions of devices, spanning home, vehicular, and industrial environments. These devices will be used for applications ranging from autonomous vehicles to health care. The complexity, extent and range of applications envisioned for the Internet of Things make it especially vulnerable to cyber-attack, while at the same time making it particularly difficult to protect from such attacks using traditional methods. Furthermore, the massive number of these devices, the low power available to them, the limited hardware of which they will be comprised, and the lack of traditional infrastructure to connect them, also pose severe technical challenges to the use of traditional methods of cyber security in this setting. This study aims to develop a new security paradigm for the Internet of Things, in which the physical properties of the radiofrequency environment are used to enhance the security of communications between devices. This work represents a completely new approach to communications security in the Internet of Things, which has far-reaching implications on the ability of these technologies to be deployed in a greater number of security-sensitive applications. Thus, this research has the potential to transform cybersecurity in an environment that is sure to become a major part of our information infrastructure in the coming years.The proposed work will address critical issues in Internet of Things security, which are based on the defining aspects of the Internet of Things: short-packet communication, massive and widely distributed deployment, and large-scale data collection. Physical-layer security methods, which exploit resources in the transmission medium to guarantee secure communication against eavesdroppers, are promising solutions to address the challenges posed in securing the Internet of Things. This exploratory study will consider the potential of physical-layer-security principles for application in the Internet of Things. Three main thrusts are envisioned: secure transmission of short packets; secure function computation; and scaling laws for secrecy capacity in Internet of Things networks. Short packets are a critical part of Internet of Things applications such as vehicle-to-vehicle communications, alerting systems, and sensor networks. Much work on physical layer security has focused on the classical Shannon regime of infinite block-length, which is not suitable for such applications. Thus, developing an understanding of the fundamentals of physical layer security in the short block-length regime is a critical step in applying such methods to the Internet of Things. The Internet of Things is also associated with very large distributed data applications, in which the Internet of Things terminals are sensors generating large amount of spatially distributed data. In such situations, reliable and secure computation from such data is an important aspect of cyber-security in Internet of Things applications. Therefore, developing techniques to do so is a critical step in the development of secure spatially distributed sensing systems. Moreover, scaling laws have been an important part of the understanding of the capabilities of large-scale wireless networks, such as the Internet of Things. Determining how secrecy capacity scales in such networks will lead to a greater understanding of the fundamental ability of Internet of Things to support secure communication, and can thereby guide the development of secure protocols and coding schemes for Internet of Things applications.
网络安全是当今技术开发和部署中最紧迫的问题之一,也是一个严重的社会问题。无线网络在这方面尤其具有挑战性。物联网是无线通信的一个新兴方面,预计将互联数千亿台设备,覆盖家庭、车辆和工业环境。这些设备将用于从自动驾驶汽车到医疗保健的各种应用。物联网应用的复杂性、广度和范围使其特别容易受到网络攻击,同时也使得使用传统方法保护其免受此类攻击变得特别困难。此外,这些设备的数量庞大、可用的功率低、组成这些设备的硬件有限,以及缺乏连接这些设备的传统基础设施,这也给在这种情况下使用传统的网络安全方法带来了严峻的技术挑战。这项研究旨在开发一种新的物联网安全范式,其中利用射频环境的物理属性来增强设备之间通信的安全性。这项工作代表了一种全新的物联网通信安全方法,对这些技术在更多安全敏感应用中的部署能力具有深远影响。因此,这项研究有可能在未来几年成为我们信息基础设施的主要组成部分的环境中改变网络安全。拟议的工作将解决物联网安全中的关键问题,这些问题基于物联网的定义方面:短包通信、大规模和广泛分布的部署以及大规模数据收集。物理层安全方法利用传输介质中的资源来保证安全通信,防止窃听者,是解决物联网安全所带来的挑战的有前途的解决方案。这项探索性研究将考虑物理层安全原则在物联网中应用的潜力。设想了三个主要目标:短包的安全传输;安全函数计算;以及物联网网络中保密容量的伸缩律。短包是物联网应用的关键部分,例如车载通信、警报系统和传感器网络。物理层安全方面的工作主要集中在经典的无限块长度的香农体制上,这种体制不适合这种应用。因此,了解短数据块长度机制中物理层安全的基本原理是将此类方法应用于物联网的关键一步。物联网还与非常大的分布式数据应用相关联,其中物联网终端是产生大量空间分布数据的传感器。在这种情况下,从这些数据进行可靠和安全的计算是物联网应用中网络安全的一个重要方面。因此,开发这样的技术是开发安全的空间分布式传感系统的关键一步。此外,伸缩规律一直是理解大规模无线网络(如物联网)功能的重要组成部分。确定此类网络中的保密容量如何扩展将有助于更好地理解物联网支持安全通信的基本能力,从而可以指导物联网应用的安全协议和编码方案的开发。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approaches to Secure Inference in the Internet of Things: Performance Bounds, Algorithms, and Effective Attacks on IoT Sensor Networks
  • DOI:
    10.1109/msp.2018.2842261
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Jiangfan Zhang;Rick S. Blum;H. Poor
  • 通讯作者:
    Jiangfan Zhang;Rick S. Blum;H. Poor
Secret-Key Generation and Convexity of the Rate Region Using Infinite Compound Sources
使用无限复合源的速率区域的秘密密钥生成和凸性
Secure computation of linear functions over linear discrete multiple-access wiretap channels
通过线性离散多址窃听通道安全计算线性函数
  • DOI:
    10.1109/acssc.2016.7869665
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goldenbaum, Mario;Boche, Holger;Poor, H. Vincent
  • 通讯作者:
    Poor, H. Vincent
Power Allocation for Energy Efficiency and Secrecy of Wireless Interference Networks
Wireless physical layer security
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harold Vincent Poor其他文献

Harold Vincent Poor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harold Vincent Poor', 18)}}的其他基金

ECCS-EPSRC: NeuroComm: Brain-Inspired Wireless Communications -- From Theoretical Foundations to Implementation for 6G and Beyond
ECCS-EPSRC:NeuroComm:受大脑启发的无线通信——从理论基础到 6G 及更高版本的实施
  • 批准号:
    2335876
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
  • 批准号:
    2128448
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER:Collaborative Research: Blockchain Graphs as Testbeds of Power Grid Resiliece and Functionality Metrics
EAGER:协作研究:区块链图作为电网弹性和功能指标的测试平台
  • 批准号:
    2039716
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: The effects of evolutionary adaptations on the spreading of COVID-19
RAPID:合作研究:进化适应对 COVID-19 传播的影响
  • 批准号:
    2026982
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NSF-BSF:CIF: Small: A Unified View of Estimation and Information Relationships for Networks and Beyond
NSF-BSF:CIF:小型:网络及其他领域的估计和信息关系的统一视图
  • 批准号:
    1908308
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Local Topological Properties of Power Flow Networks, and Their Role in Power System Functionality
EAGER:协作研究:潮流网络的局部拓扑特性及其在电力系统功能中的作用
  • 批准号:
    1824710
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
AMPS: Collaborative Research: Analysis of Local Power Grid Properties: From Network Motifs to Tensors
AMPS:协作研究:本地电网特性分析:从网络主题到张量
  • 批准号:
    1736417
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
WiFiUS: Collaborative Research: Secure Inference in the Internet of Things
WiFiUS:协作研究:物联网中的安全推理
  • 批准号:
    1702808
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Renewables: Collaborative Research: Foundations of Prosumer-Centric Grid Energy Management
EAGER:可再生能源:合作研究:以产消者为中心的电网能源管理的基础
  • 批准号:
    1549881
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Feedback Communication: Models, Designs, and Fundamental Limits
CIF:媒介:协作研究:反馈沟通:模型、设计和基本限制
  • 批准号:
    1513915
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
  • 批准号:
    61300132
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Physical layer authentication of IoT devices in the 6G era
6G时代物联网设备物理层认证
  • 批准号:
    24K07482
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrated Waveform and Intelligence (IWAI): Physical Layer Solutions to Sustainable 6G
集成波形和智能 (IWAI):可持续 6G 的物理层解决方案
  • 批准号:
    EP/Y000315/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Unraveling the Impacts of Ocean Surface Current Gradients and Ocean Surface Waves on Atmospheric Boundary Layer Physical Processes over the Gulf Stream Using COAWST Model
使用 COAWST 模型揭示海面洋流梯度和海面波浪对湾流上空大气边界层物理过程的影响
  • 批准号:
    2307335
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Intelligent Physical Layer Security Protocols for Backscattering in IoT
用于物联网反向散射的智能物理层安全协议
  • 批准号:
    DE230101391
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Early Career Researcher Award
Design and Optimization of Probabilistic Constellation Shaping for Physical Layer Security in Visible Light Communication
可见光通信中物理层安全的概率星座整形设计与优化
  • 批准号:
    23K13333
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SaTC: CORE: Medium: Physically Unclonable Wireless Systems (PUWS) for RF Fingerprinting and Physical Layer Security
SaTC:核心:中:用于射频指纹识别和物理层安全的物理不可克隆无线系统 (PUWS)
  • 批准号:
    2233774
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Physical Layer-based Cryptographic Key Management and Data Reliability Assurance for Smart IoT Environments
智能物联网环境中基于物理层的密钥管理和数据可靠性保证
  • 批准号:
    23K11103
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of cyber-physical system specialization for physical-layer
物理层信息物理系统专业化建设
  • 批准号:
    22K04096
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了