EAGER: Planning Believable Narratives by Modeling Agent Beliefs

EAGER:通过建模代理信念规划可信的叙述

基本信息

  • 批准号:
    1647427
  • 负责人:
  • 金额:
    $ 15.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to improve the software that generates stories automatically for virtual environments like training simulations and educational games. Specifically, the software will be able to reason about what is actually true, what each character thinks is true, what they think others think is true, and so on, to improve the way virtual characters act and make them seem more believable and more human. Current approaches to designing these narratives often assume agents know everything about others' beliefs and goals; this often leads to inconsistent or un-believable behaviors by the agents, which damage the credibility of the software and quality of the experience for their human users. The proposal will extend the lead researcher's existing narrative planning system, using an approach that lets agents consider multiple sets of beliefs that are consistent with their own and others' actions so far, ruling out situations where agents have beliefs that are inconsistent with their actions. Compared to existing approaches, this should allow the narrative planner to generate a wider variety of narratives that are also more believable to humans, as well as to handle situations such as trickery and uncertainty where reasoning about beliefs is crucial. The research team will test the software and these assumptions through several experiments that ask people to compare narratives generated by the new software to those generated by state of the art methods. If successful, the project sets the stage to improve the quality of systems where virtual agents interact with humans such as smart phone assistants, online games, automated customer chat tools, and educational software. In particular, the work will lead to training scenarios where understanding others' beliefs is crucial, such as officer-citizen interactions. The work is also interdisciplinary, ranging from computer science to psychology, and the lead researcher is committed to training young researchers to do work that crosses these intellectual boundaries and to recruiting researchers who might not otherwise participate in computer science-related research.In the work, the lead researcher proposes to develop a model of agent belief based on doxastic modal logic and possible worlds reasoning suitable for use in a planning algorithm that coordinates a virtual environment. By supporting a single modal 'believes' predicate, the planner can treat the narrative search space as a Kripke structure to reason about epistemically accessible states. This improves on previous models by allowing arbitrarily nested beliefs while simultaneously reducing the burden on the virtual environment's author to write alternative scenarios, thus increasing their flexibility and expressiveness. The research team will integrate this model of beliefs into a prototype system based on the Glaive narrative planner previously developed by the lead researcher. This prototype will take advantage of Glaive's existing heuristic-driven state-space search techniques: in addition to expanding temporally accessible states, Glaive will also expand epistemically accessible states and track when an action taken by an epistemic child can be anticipated by its epistemic parent in the Kripke structure. The initial prototype will be too slow for real-time use, but it will be suitable for conducting the proposed experiments that investigate to what extent such a model improves the believability of agent behavior in automatically generated stories. In particular, the team will study whether the planner produces narratives whose structure better meets the expectations of a human audience: that is, the model will answer questions about agent beliefs more similarly to a human audience and the resulting planner will generate stories more like those composed by human authors. Further, the prototype is expected to solve certain narrative planning problems which algorithms that lack a model of agent beliefs cannot solve. These claims will be evaluated by having the new prototype and two state-of-the-art planners generate narratives for a library of scenarios to be developed by the team that rely on agents having a theory of mind for other agents, then asking both the systems and human users a number of questions about the generated narrative and agents' beliefs to evaluate how well the planners' output conforms with humans' expectations and believability.
这个项目的目标是改进软件,自动生成故事的虚拟环境,如培训模拟和教育游戏。具体来说,该软件将能够推理什么是真实的,每个角色认为什么是真实的,他们认为其他人认为什么是真实的,等等,以改善虚拟角色的行为方式,使他们看起来更可信,更人性化。目前设计这些叙述的方法通常假设代理知道关于其他人的信仰和目标的一切;这通常会导致代理的不一致或令人难以置信的行为,这会损害软件的可信度和人类用户的体验质量。 该提案将扩展首席研究员现有的叙事规划系统,使用一种方法,让代理人考虑与自己和他人行为一致的多组信念,排除代理人具有与其行为不一致的信念的情况。 与现有的方法相比,这应该允许叙事计划者生成更广泛的叙事,这些叙事对人类来说也更可信,以及处理诸如欺骗和不确定性等情况,其中对信念的推理至关重要。 研究小组将通过几个实验来测试软件和这些假设,这些实验要求人们将新软件生成的叙述与最先进的方法生成的叙述进行比较。 如果成功,该项目将为提高虚拟代理与人类交互的系统质量奠定基础,例如智能手机助理,在线游戏,自动客户聊天工具和教育软件。 特别是,这项工作将导致培训场景,其中了解他人的信仰是至关重要的,如官员与公民的互动。 这项工作也是跨学科的,从计算机科学到心理学都有,首席研究员致力于培训年轻的研究人员去做跨越这些智力界限的工作,并招募那些原本可能不会参与计算机科学相关研究的研究人员在工作中研究者提出了一种基于doxastic模态逻辑和可能世界推理的智能体信念模型,该模型适用于规划协调虚拟环境的算法。通过支持一个单一的模态“相信”谓词,规划者可以把叙事搜索空间作为一个克里普克结构来推理认知上可及的状态。这改进了以前的模型,允许任意嵌套的信念,同时减少了虚拟环境的作者编写替代方案的负担,从而增加了它们的灵活性和表现力。 研究小组将把这个信念模型整合到一个原型系统中,这个原型系统是基于首席研究员之前开发的Glaive叙事计划器。 该原型将利用Glaive现有的认知驱动的状态空间搜索技术:除了扩展暂时可访问的状态外,Glaive还将扩展认知可访问的状态,并跟踪何时由认知儿童采取的行动可以由其认知父母在Kripke结构中预期。 最初的原型对于实时使用来说太慢了,但它将适合进行拟议的实验,研究这种模型在多大程度上提高了自动生成的故事中代理行为的可信度。 特别是,该团队将研究规划者是否会产生结构更好地满足人类观众期望的叙事:也就是说,该模型将回答有关代理人信念的问题,更类似于人类观众,并且由此产生的规划者将生成更像人类作者撰写的故事。 此外,原型预计将解决某些叙事规划问题,缺乏代理信念模型的算法无法解决。 这些声明将通过以下方式进行评估:让新原型和两个最先进的规划者为团队开发的场景库生成叙述,这些场景库依赖于具有其他代理的心理理论的代理,然后向系统和人类用户询问一些关于生成的叙述和代理的信念的问题,以评估规划者的输出是否符合人类的期望和可信度。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combining Intentionality and Belief: Revisiting Believable Character Plans
结合意向性和信念:重新审视可信的性格计划
Measuring Presence and Performance in a Virtual Reality Police Use of Force Training Simulation Prototype
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. T. Garcia;Stephen G. Ware;Lewis J. Baker
  • 通讯作者:
    E. T. Garcia;Stephen G. Ware;Lewis J. Baker
A Possible Worlds Model of Belief for State-Space Narrative Planning
状态空间叙事规划的可能世界信念模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Ware其他文献

Stephen Ware的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Ware', 18)}}的其他基金

CAREER: Structured High-Agency Interactive Narratives for Virtual Environments
职业:虚拟环境的结构化高代理互动叙事
  • 批准号:
    2145153
  • 财政年份:
    2022
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Continuing Grant
CHS: Small: Strong-Story Narrative Planning for Authoring Proactive Intelligent Virtual Environments
CHS:小型:用于创作主动智能虚拟环境的强故事叙事规划
  • 批准号:
    1911053
  • 财政年份:
    2019
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
CRII: CHS: Fast Planning Using Computational Models of Narrative
CRII:CHS:使用叙事计算模型进行快速规划
  • 批准号:
    1464127
  • 财政年份:
    2015
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Continuing Grant

相似海外基金

Planning Grant: Developing capacity to attract diverse students to the geosciences: A public relations framework
规划补助金:培养吸引多元化学生学习地球科学的能力:公共关系框架
  • 批准号:
    2326816
  • 财政年份:
    2024
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
  • 批准号:
    2412406
  • 财政年份:
    2024
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Planning: FIRE-PLAN: Exploring fire as medicine to revitalize cultural burning in the Upper Midwest
规划:FIRE-PLAN:探索火作为药物,以振兴中西部北部的文化燃烧
  • 批准号:
    2349282
  • 财政年份:
    2024
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
CC* Planning: Strengthening Central Michigan University's Cyberinfrastructure
CC* 规划:加强中央密歇根大学的网络基础设施
  • 批准号:
    2345749
  • 财政年份:
    2024
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Planning: FIRE-PLAN: Building Wildland Fire Science Capacity in Alaska Through The University of Alaska Fairbanks Rural Campuses
规划:FIRE-PLAN:通过阿拉斯加大学费尔班克斯乡村校区建设阿拉斯加荒地火灾科学能力
  • 批准号:
    2333423
  • 财政年份:
    2024
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335568
  • 财政年份:
    2024
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335569
  • 财政年份:
    2024
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Continuing Grant
HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10103131
  • 财政年份:
    2024
  • 资助金额:
    $ 15.7万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了