CAREER: Structured High-Agency Interactive Narratives for Virtual Environments

职业:虚拟环境的结构化高代理互动叙事

基本信息

  • 批准号:
    2145153
  • 负责人:
  • 金额:
    $ 53.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Narratives are fundamental to the way we think, communicate, and learn. Virtual environments such as training simulations invite the user to play the role of one character in a narrative, while the system controls all the other non-player characters and the environment. Interactive narratives are effective tools for teaching people how to perform a task and educating people about important topics, but writing interactive narratives is challenging. Most are manually written, ensuring a nice structure but limiting their scope because every choice must be imagined in advance. Some environments are realistic simulations that give users freedom to do a wide variety of actions, but then it is hard for the designer to guarantee the narratives have the necessary content. This project will use artificial intelligence planning algorithms to create narratives at run time in games and training simulations. Planned narratives can have the structure of a hand-written story and the freedom of a simulation. This project will explore fast algorithms for generating narratives as well as models of what users remember and expect. Over the project duration, the research team will develop virtual environments (such as a virtual reality de-escalation training simulation for police officers) that evolves from a role-playing exercise between two people to a fully automated virtual environment where the artificial intelligence personalizes the interactive narrative for each player.This project frames interactive narratives as an improvisational exercise between a player who controls one character and an experience manager who controls all the other elements of a virtual environment. These partners communicate their beliefs, intentions, memories, and expectations via the actions they choose to take, which is a noisy channel that requires inference for understanding. This project operationalizes the interactive narrative creation as a Mutual Implicit Question Answering (MIQA) process. Each action taken by one participant causes their partner to implicitly ask questions about why they took that action and/or implicitly answers questions that were raised earlier. The better one partner can answer questions raised by the other, the closer they are to mutual understanding. MIQA combines research on multi-agent artificial intelligence planning, cognitive models of memory and expectations, and procedures from automated question answering to represent both partners and how well they understand one another. Participants in an interactive virtual environment will do paired exercises where one will act as player and the other as experience manager. During this exercise, both partners will answer questions about their actions and about their perceptions of their partner’s actions. They will also report on their perceptions of the structure of the narrative and the player agency. These exercises will begin as person-to-person exercises but will evolve into person-to-intelligent-agent exercises through data gathering and model refinement. The research hypothesis is that the intelligent agent will be able to provide high-agency, structured interactive narratives that approach the quality of those created with a human partner. This hypothesis will be evaluated using a Turing test: can the player identify whether the interactive narration is controlled by a human or an intelligent agent. These exercises will take place in a virtual environment called Camelot, but the research team will simultaneously implement the same procedures into an ongoing virtual reality training simulation that is being built in consultation with police officer training experts to teach best practices for de-escalating potentially dangerous situations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。叙述是我们思考、交流和学习的基础。训练模拟等虚拟环境邀请用户在故事中扮演一个角色,而系统则控制所有其他非玩家角色和环境。交互式叙述是教会人们如何执行任务和教育人们了解重要主题的有效工具,但编写交互式叙述具有挑战性。大多数是手工编写的,确保了良好的结构,但限制了它们的范围,因为每个选择都必须提前想象。有些环境是逼真的模拟,让用户可以自由地做各种各样的动作,但设计师很难保证故事具有必要的内容。该项目将使用人工智能规划算法在游戏和训练模拟中创建运行时的故事。计划叙述可以拥有手写故事的结构和模拟的自由。这个项目将探索快速生成叙述的算法,以及用户记忆和期望的模型。在项目期间,研究团队将开发虚拟环境(如警察的虚拟现实降级训练模拟),从两个人之间的角色扮演练习演变为完全自动化的虚拟环境,其中人工智能为每个玩家个性化互动叙事。这个项目将互动叙事框架为控制一个角色的玩家和控制虚拟环境中所有其他元素的体验经理之间的即兴练习。这些伴侣通过他们选择采取的行动来传达他们的信念、意图、记忆和期望,这是一个嘈杂的渠道,需要推断才能理解。该项目将交互式叙事创作作为一个相互隐含问答(MIQA)过程进行操作。一个参与者采取的每一个行动都会导致他们的伴侣含蓄地问他们为什么要采取这个行动,或者含蓄地回答之前提出的问题。一方对另一方提出的问题回答得越好,双方就越接近相互理解。MIQA结合了对多智能体人工智能规划、记忆和期望的认知模型以及自动问答过程的研究,以表示合作伙伴以及他们对彼此的理解程度。在交互式虚拟环境中,参与者将进行配对练习,其中一人扮演玩家,另一人扮演体验经理。在这个练习中,双方都要回答关于他们的行为以及他们对对方行为的看法的问题。他们还会报告自己对叙述结构和玩家代理的看法。这些练习将以人对人的练习开始,但将通过数据收集和模型改进演变为人对智能代理的练习。该研究的假设是,智能代理将能够提供高代理、结构化的互动叙事,其质量接近与人类伙伴一起创造的叙事。这一假设将使用图灵测试进行评估:玩家是否能够识别交互叙述是由人类还是智能代理控制的。这些演习将在一个名为Camelot的虚拟环境中进行,但研究团队将同时将相同的程序实施到正在进行的虚拟现实训练模拟中,该模拟正在与警官培训专家协商建立,以教授降低潜在危险情况的最佳实践。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Open-World Narrative Generation to Answer Players’ Questions
生成开放世界叙事来回答玩家的问题
Intelligent De-Escalation Training via Emotion-Inspired Narrative Planning
通过情感启发的叙事规划进行智能降级培训
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Ware其他文献

Stephen Ware的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Ware', 18)}}的其他基金

CHS: Small: Strong-Story Narrative Planning for Authoring Proactive Intelligent Virtual Environments
CHS:小型:用于创作主动智能虚拟环境的强故事叙事规划
  • 批准号:
    1911053
  • 财政年份:
    2019
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Standard Grant
EAGER: Planning Believable Narratives by Modeling Agent Beliefs
EAGER:通过建模代理信念规划可信的叙述
  • 批准号:
    1647427
  • 财政年份:
    2016
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Standard Grant
CRII: CHS: Fast Planning Using Computational Models of Narrative
CRII:CHS:使用叙事计算模型进行快速规划
  • 批准号:
    1464127
  • 财政年份:
    2015
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Continuing Grant
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
  • 批准号:
    24K17312
  • 财政年份:
    2024
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Computing over Compressed Graph-Structured Data
压缩图结构数据的计算
  • 批准号:
    EP/X039447/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Research Grant
Nano-structured RC Networks - A Pathway To Artificial Skin
纳米结构 RC 网络 - 人造皮肤的途径
  • 批准号:
    EP/Y002172/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Research Grant
Efficient Federated Learning for Deep Learning Through Structured Training
通过结构化训练实现深度学习的高效联邦学习
  • 批准号:
    24K20845
  • 财政年份:
    2024
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Revolutionizing Tactile AI: Developing a Soft, Liquid-Structured, High Density, 3-Axis Tactile Sensor
彻底改变触觉 AI:开发柔软、液体结构、高密度、3 轴触觉传感器
  • 批准号:
    24K20874
  • 财政年份:
    2024
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Elucidating the Formation and Evolution of Metastable Phases in Fluorite-Structured Ferroelectrics using Advanced Electron Microscopy
职业:使用先进电子显微镜阐明萤石结构铁电体中亚稳相的形成和演化
  • 批准号:
    2338558
  • 财政年份:
    2024
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Continuing Grant
Additive Micro/Nano-manufacturing of Structured Piezoelectric Active Materials for Intelligent Stent Monitoring
用于智能支架监测的结构化压电活性材料的增材微/纳米制造
  • 批准号:
    EP/Y003551/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
  • 批准号:
    2338880
  • 财政年份:
    2024
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Continuing Grant
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
  • 批准号:
    2340481
  • 财政年份:
    2024
  • 资助金额:
    $ 53.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了