EAGER: Scalable Crowdsourced Reinforcement of Robot Behavior

EAGER:可扩展的机器人行为众包强化

基本信息

项目摘要

This project will develop the groundwork for systems that allow large numbers of volunteer contributors to help train robots with different movement capabilities to respond correctly to commands, answering research questions both about how to design the systems to motivate people to contribute and about how crowds can help train robots. This is an important robotics question because training these robots requires large, labeled datasets in which the robots are moving and their motions are appropriately labeled; collecting volunteer contributions ("crowdsourcing") is a potentially cost- and time-effective way to generate these kinds of datasets. To test this, the research team will extend an existing platform that allows people to talk and collaborate around video streams in order to attract and retain participants interested in helping train robots. They will present volunteers watching their stream with simulated robots that are increasingly complex over time, asking volunteers both to suggest appropriate commands that might work well with a particular robot's structure and to give the robots feedback about how well they carry out the commands. Although at first the robots will simply try different possible motions, volunteers' feedback will help the robots learn which motions help them carry out commands, while providing the volunteers direct experience with robotics research that might increase their interest in and acceptance of robots in the future. To encourage long-term participation, the team will also add a number of interface features to the stream that allow volunteers more control over the robots being displayed as well as information about the effectiveness of their training efforts. The research will result in insights into robot learning, the production of large datasets that could be used in other robotics research, and the validation of strategies (such as gradually increasing the complexity of tasks and the demonstration of progress) for encouraging people to participate in crowdsourcing systems. This, too, is an important general question, as crowdsourcing is useful in many socially relevant domains, including building open source software, constructing information resources, and supporting citizen science. Finally, the team will make the supporting software and data available to researchers in domains such as linguistics and developmental psychology that are also interested in language acquisition. To do this, the team will leverage an existing prototype system that is based on a live video streaming platform. This system presents a robot, then cycles through a command selection period where the content people type into the chat window is interpreted as potential commands, and a command response period where the robot performs some action and chat input is interpreted as positive or negative reinforcement for robot learning. An initial trial generated much interest and useful data for learning, but contributions rapidly dropped because the robots did not learn in real-time and did not change. To improve learning, the team will integrate robot control algorithms that leverage crowd input to learn appropriate per-command behaviors online, as well as visual indicators of the amount of learning that might incentivize participation through showing the value of volunteers' contributions. To improve variety, the team will slowly evolve the robot's morphology, adding additional appendages and sensors that support the exploration and learning of new commands while helping maintain volunteers' interest. In addition to evaluating the effectiveness of the data itself in supporting robot learning of commands, the team will measure the levels, frequency, and appropriateness of contributions to evaluate whether changes in responsiveness and robot complexity in fact increase people's willingness to participate, as well as hypotheses about how the apparent capabilities of robots affect the ways people choose to interact with them. The long-term goal is to build a large, sustained community around robot teaching that can help evolutionary biologists, social scientists, cognitive scientists, neuroscientists, linguists, and roboticists all pose and answer novel hypotheses around the co-evolution of humans and robots.
该项目将为系统开发基础,允许大量志愿者贡献者帮助训练具有不同运动能力的机器人正确响应命令,回答有关如何设计系统以激励人们做出贡献以及人群如何帮助训练机器人的研究问题。 这是一个重要的机器人问题,因为训练这些机器人需要大型的标记数据集,其中机器人正在移动,并且它们的运动被适当地标记;收集志愿者贡献(“众包”)是生成这些数据集的潜在成本和时间有效的方法。 为了测试这一点,研究团队将扩展现有的平台,允许人们围绕视频流进行交谈和协作,以吸引和留住有兴趣帮助训练机器人的参与者。 他们将向志愿者展示随着时间的推移越来越复杂的模拟机器人,要求志愿者提出适当的命令,这些命令可能与特定机器人的结构很好地配合,并向机器人反馈他们执行命令的情况。 虽然一开始机器人只是尝试不同的可能动作,但志愿者的反馈将帮助机器人了解哪些动作有助于它们执行命令,同时为志愿者提供机器人研究的直接经验,这可能会增加他们对机器人的兴趣和接受未来。 为了鼓励长期参与,该团队还将在流中添加一些界面功能,让志愿者能够更多地控制所展示的机器人以及有关其培训工作有效性的信息。 该研究将深入了解机器人学习,产生可用于其他机器人研究的大型数据集,并验证鼓励人们参与众包系统的策略(例如逐渐增加任务的复杂性和展示进展)。 这也是一个重要的一般性问题,因为众包在许多与社会相关的领域都很有用,包括构建开源软件、构建信息资源和支持公民科学。 最后,该团队将为语言学和发展心理学等领域的研究人员提供支持软件和数据,这些领域也对语言习得感兴趣。为此,该团队将利用基于实时视频流平台的现有原型系统。 该系统呈现一个机器人,然后循环通过命令选择期,其中人们键入聊天窗口的内容被解释为潜在的命令,以及命令响应期,其中机器人执行一些动作,聊天输入被解释为机器人学习的积极或消极强化。 最初的试验产生了很多兴趣和有用的学习数据,但贡献迅速下降,因为机器人没有实时学习,也没有改变。 为了改善学习,该团队将整合机器人控制算法,利用人群输入在线学习适当的每命令行为,以及学习量的视觉指标,通过显示志愿者贡献的价值来激励参与。 为了提高多样性,该团队将慢慢发展机器人的形态,增加额外的附件和传感器,以支持探索和学习新命令,同时帮助保持志愿者的兴趣。 除了评估数据本身在支持机器人学习命令方面的有效性外,该团队还将测量贡献的水平,频率和适当性,以评估响应性和机器人复杂性的变化是否实际上增加了人们的参与意愿,以及关于机器人的明显能力如何影响人们选择与他们互动的方式的假设。 长期目标是围绕机器人教学建立一个大型的、持续的社区,帮助进化生物学家、社会科学家、认知科学家、神经科学家、语言学家和机器人学家提出并回答关于人类和机器人共同进化的新假设。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Bongard其他文献

Evolving higher-order synergies reveals a trade-off between stability and information integration capacity in complex systems
不断发展的高阶协同效应揭示了复杂系统中稳定性和信息集成能力之间的权衡
  • DOI:
    10.48550/arxiv.2401.14347
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas F. Varley;Joshua Bongard
  • 通讯作者:
    Joshua Bongard

Joshua Bongard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Bongard', 18)}}的其他基金

DMREF/Collaborative Research: Design and Optimization of Granular Metamaterials using Artificial Evolution
DMREF/协作研究:利用人工进化设计和优化颗粒超材料
  • 批准号:
    2118810
  • 财政年份:
    2021
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant
AI Institute: Planning: The Proteus Institute: Intelligence Through Change
AI 研究所:规划:Proteus 研究所:通过变革实现智能
  • 批准号:
    2020247
  • 财政年份:
    2020
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant
CAREER: Investigating the Ultimate Mechanisms of Embodied Cognition
职业:研究具身认知的终极机制
  • 批准号:
    0953837
  • 财政年份:
    2010
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Continuing Grant
Exploiting 'Like Me' Hypotheses in Learning Robots
在学习机器人中利用“像我一样”的假设
  • 批准号:
    0751385
  • 财政年份:
    2007
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
  • 批准号:
    MR/Y011686/1
  • 财政年份:
    2025
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Fellowship
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Studentship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
  • 批准号:
    2335583
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: Building a Scalable and Polymorphic Cyberinfrastructure for Diverse Research and Education Needs at Illinois State University
CC* 网络基础设施:为伊利诺伊州立大学的多样化研究和教育需求构建可扩展和多态的网络基础设施
  • 批准号:
    2346712
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了