Computational Infrastructure for Brain Research: EAGER: A Scalable Solution for Processing High Resolution Brain Connectomics Data

脑研究的计算基础设施:EAGER:处理高分辨率脑连接组数据的可扩展解决方案

基本信息

  • 批准号:
    1649923
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Obtaining a "connectome" or map of the wiring of the brain is crucial to understanding brain structure and function, and has been set as long-term goals of several international government-funded initiatives due to the potential benefits for improving health, treating brain diseases, and understanding development. As technologies for sample preparation and microscopy advance, it is becoming feasible to image large sections of brain tissue. However, the vast quantities of data produced with these techniques is far outpacing the ability of neuroscientists to analyze the data. This project will address the data analysis challenge by developing new computational software tools that facilitate use of advanced computing for connectomics studies, in alignment with NSF's mission to promote the progress of science and advance national health, prosperity and welfare.Understanding the microarchitecture and neuronal morphologies that comprise neural circuitry in the brain is crucial to understanding brain function. This EAGER project aims to build the computational and data infrastructure that is necessary to manage and process large microscopy imaging data sets for connectomics studies, bringing High Performance Computing (HPC) resources into the neuroscience workflow. The project will employ a data model that enables scientists to visualize, interact with, and process data of any size that is stored in any remote location, from USB drives to high-performance parallel file systems. The software infrastructure will furthermore enable automatic mapping of analysis procedures designed by neuroscientists to remote HPC systems. The system will leverage state-of-the-art tools and practices developed in the HPC community, and aims to result in greatly accelerated studies of connectivity in the brain at scale.This Early-concept Grants for Exploratory Research (EAGER) award by the CISE Division of Advanced Cyberinfrastructure is jointly supported by the CISE Division of Information and Intelligent Systems, with funds associated with the NSF Understanding the Brain, BRAIN Initiative activities, and for developing national research infrastructure for neuroscience. This project also aligns with NSF objectives under the National Strategic Computing Initiative.
获得“连接体”或大脑布线图对于了解大脑结构和功能至关重要,并且由于其对改善健康,治疗脑部疾病和了解发育的潜在益处,已被设定为几个国际政府资助计划的长期目标。随着样品制备和显微镜技术的进步,对脑组织的大切片进行成像变得可行。然而,这些技术产生的大量数据远远超出了神经科学家分析数据的能力。该项目将通过开发新的计算软件工具来解决数据分析的挑战,这些工具有助于将先进的计算用于连接组学研究,与NSF的使命保持一致,以促进科学进步和促进国家健康,繁荣和福利。了解大脑中神经回路的微结构和神经元形态对于了解大脑功能至关重要。EAGER项目旨在建立必要的计算和数据基础设施,以管理和处理用于连接组学研究的大型显微镜成像数据集,将高性能计算(HPC)资源引入神经科学工作流程。该项目将采用一种数据模型,使科学家能够可视化,交互和处理存储在任何远程位置的任何大小的数据,从USB驱动器到高性能并行文件系统。此外,软件基础设施将使神经科学家设计的分析程序自动映射到远程HPC系统。该系统将利用HPC社区开发的最先进的工具和实践,旨在大大加快大脑连接的大规模研究。CISE高级网络基础设施部门的探索性研究(EAGER)早期概念赠款奖由CISE信息和智能系统部门共同支持,与NSF理解大脑,BRAIN Initiative活动,以及发展神经科学的国家研究基础设施。该项目也符合国家战略计算计划下的NSF目标。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shared-Memory Parallel Computation of Morse-Smale Complexes with Improved Accuracy
Ray Tracing Generalized Tube Primitives: Method and Applications
光线追踪广义管基元:方法和应用
  • DOI:
    10.1111/cgf.13703
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Han, Mengjiao;Wald, Ingo;Usher, Will;Wu, Qi;Wang, Feng;Pascucci, Valerio;Hansen, Charles D.;Johnson, Chris R.
  • 通讯作者:
    Johnson, Chris R.
Direct Multifield Volume Ray Casting of Fiber Surfaces
  • DOI:
    10.1109/tvcg.2016.2599040
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Kui Wu;A. Knoll;Benjamin J. Isaac;Hamish A. Carr;Valerio Pascucci
  • 通讯作者:
    Kui Wu;A. Knoll;Benjamin J. Isaac;Hamish A. Carr;Valerio Pascucci
Toward Localized Topological Data Structures: Querying the Forest for the Tree
走向局部拓扑数据结构:从森林中查询树
Flexible Live-Wire: Image Segmentation with Floating Anchors
灵活的火线:使用浮动锚点进行图像分割
  • DOI:
    10.1111/cgf.13364
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Summa, B.;Faraj, N.;Licorish, C.;Pascucci, V.
  • 通讯作者:
    Pascucci, V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valerio Pascucci其他文献

Notes on the distributed computation of merge trees on CW-complexes
关于 CW 复合体上合并树的分布式计算的注释
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aaditya G. Landge;P. Bremer;A. Gyulassy;Valerio Pascucci
  • 通讯作者:
    Valerio Pascucci
Flow Visualization with Quantified Spatial and Temporal Errors Using Edge Maps
使用边缘图进行具有量化空间和时间误差的流可视化
Stability of Dissipation Elements: A Case Study in Combustion
耗散元件的稳定性:燃烧案例研究
  • DOI:
    10.1111/cgf.12361
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    A. Gyulassy;P. Bremer;R. Grout;H. Kolla;Jacqueline H. Chen;Valerio Pascucci
  • 通讯作者:
    Valerio Pascucci
Hypervolume visualization: a challenge in simplicity
超体积可视化:简单性的挑战
Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion
3D 矢量场中的临界点消除:鲁棒性和讨论

Valerio Pascucci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valerio Pascucci', 18)}}的其他基金

OAC: Piloting the National Science Data Fabric: A Platform Agnostic Testbed for Democratizing Data Delivery
OAC:试点国家科学数据结构:用于民主化数据交付的平台无关测试平台
  • 批准号:
    2138811
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: The Next Generation of Smart Cyberinfrastructure: Efficiency and Productivity Through Artificial Intelligence
EAGER:下一代智能网络基础设施:通过人工智能提高效率和生产力
  • 批准号:
    1941085
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Cost Effective Solutions for Storage and Access of Massive Imagery
PFI:AIR - TT:海量图像存储和访问的经济高效解决方案
  • 批准号:
    1602127
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CGV: Large: Collaborative Research: Coupling Simulation and Mesh Generation using Computational Topology
CGV:大型:协作研究:使用计算拓扑进行耦合仿真和网格生成
  • 批准号:
    1314896
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EAGER (G&V): Exploring Morse Theoretic Tools for Automatic Mesh Generation and Simulation on Surfaces
渴望(G
  • 批准号:
    1045032
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Scalable Algorithms for Multiscale Modeling and Analysis of Turbulent Combustion
用于湍流燃烧多尺度建模和分析的可扩展算法
  • 批准号:
    0904631
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Impacts of floating offshore wind infrastructure on the distribution and behaviour of fish and marine mammals: IFLOW
浮动海上风电基础设施对鱼类和海洋哺乳动物的分布和行为的影响:IFLOW
  • 批准号:
    2744014
  • 财政年份:
    2026
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure
高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响
  • 批准号:
    NE/Z503502/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
Research Infrastructure: CC* Data Storage: Foundational Campus Research Storage for Digital Transformation
研究基础设施:CC* 数据存储:数字化转型的基础校园研究存储
  • 批准号:
    2346636
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Research Infrastructure: KCV EDGE (Equitable and Diverse Grant Ecosystem)
研究基础设施:KCV EDGE(公平且多样化的资助生态系统)
  • 批准号:
    2345142
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
  • 批准号:
    2339753
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research Improvement Grant: Biobanking, Epistemic Infrastructure, and the Lifecycle of Genomic Data
博士论文研究改进补助金:生物样本库、认知基础设施和基因组数据的生命周期
  • 批准号:
    2341622
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了