Coarse grained models for large scale atomistic simulations of spin and lattice dynamics
用于自旋和晶格动力学大规模原子模拟的粗粒度模型
基本信息
- 批准号:227086800
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Coupling effects in magnetocaloric materials systems will be investigated by density functional theory (DFT), tight binding and bond order potential methods. Through a cooperative effort with our partners in this package proposal we want to achieve an in-depth understanding of the magnetostructural phase transitions in magnetocaloric materials and based on this contribute to an optimization of this materials class. Within this project, we will develop atomistic bond order potentials with sufficient accuracy for the simulation of magnetocaloric materials. This goal will be achieved through a systematic coarse graining of the electronic structure starting from an accurate density functional representation. The bond order potential will allow for O(N) molecular dynamics simulations and will add an additional length and time scale compared to DFT. This will allow for the simulation of microstructure elements like the dynamics of twin and grain boundaries as well as for a direct evaluation of energetic/entropic contributions in connection with the magneto-structural phase transition. Furthermore, In a close collaboration with our experimental partners we will perform accurate all electron calculations in order to optimize known and investigate possible new magnetocaloric materials. The influence of alloy composition, strain and magnetic field will be studied for Y-Co Ce-Fe based systems.
磁热材料体系中的耦合效应将用密度泛函理论、紧束缚和键级势方法进行研究。通过与我们的合作伙伴在此一揽子提案中的合作努力,我们希望深入了解磁热材料中的磁结构相变,并在此基础上对这类材料进行优化。在这个项目中,我们将开发具有足够精度的原子键序势,用于磁热材料的模拟。这一目标将通过从精确的密度泛函表示开始的电子结构的系统粗粒化来实现。键级势将允许O(N)分子动力学模拟,并且与DFT相比将增加额外的长度和时间尺度。这将允许模拟微观结构元素,如孪晶和晶界的动力学,以及直接评估与磁结构相变有关的能量/熵贡献。此外,在与我们的实验合作伙伴的密切合作中,我们将进行精确的全电子计算,以优化已知的磁热材料并研究可能的新磁热材料。本文研究了合金成分、应变和磁场对Y-Co-Ce-Fe系合金的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Ingo Opahle其他文献
Dr. Ingo Opahle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Electronic Structure Models Using Coarse-Grained Representations
使用粗粒度表示的电子结构模型
- 批准号:
2154916 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Soft- and statistical-physics models of coarse-grained biological structure and dynamics
粗粒度生物结构和动力学的软物理和统计物理模型
- 批准号:
RGPIN-2019-05888 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Configurable memory models for coarse-grained reconfigurable arrays (CGRAs)
粗粒度可重构阵列 (CGRA) 的可配置内存模型
- 批准号:
572652-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Rationalizing Potentials in Quantum Mechanics Through Hydrodynamic Quantum Analogues and Coarse-Grained Coupling Models
通过流体动力学量子模拟和粗粒度耦合模型合理化量子力学的潜力
- 批准号:
568247-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Development of Coarse-Grained Models and Computational Approaches for Studying Structure in Solutions of Cellulose Derivatives
研究纤维素衍生物溶液结构的粗粒度模型和计算方法的开发
- 批准号:
2105744 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Spanning the Scales: Insights into Dislocation Mobility Provided by Machine Learning and Coarse-Grained Models
跨越尺度:机器学习和粗粒度模型提供的位错迁移率洞察
- 批准号:
2588438 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Soft- and statistical-physics models of coarse-grained biological structure and dynamics
粗粒度生物结构和动力学的软物理和统计物理模型
- 批准号:
RGPIN-2019-05888 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Soft- and statistical-physics models of coarse-grained biological structure and dynamics
粗粒度生物结构和动力学的软物理和统计物理模型
- 批准号:
RGPIN-2019-05888 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Improving Coarse-Grained Molecular Models through the Combination of All-Atom Models and Machine Learning Methods
通过全原子模型和机器学习方法的结合改进粗粒度分子模型
- 批准号:
19K06535 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)