Towards Predictive Coarse-grained Models

走向预测粗粒度模型

基本信息

  • 批准号:
    2154433
  • 负责人:
  • 金额:
    $ 50.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

William Noid of the Pennsylvania State University is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to develop theory and computational methods for improving the predictive power of coarse-grained models in the chemical and materials sciences. Atomically detailed simulations provide exquisite insight into molecular structure, dynamics, and interactions. However, due to their computational cost, atomically detailed simulations can only effectively investigate very small length- and time-scales. In contrast, by eliminating unnecessary atomic details, coarse-grained (CG) model promise the necessary efficiency for simulating many processes of fundamental and technological significance that are far beyond the scope of atomically detailed models, e.g., the mechanisms by which viruses invade host cells or the phase behavior of industrially important polymers. Unfortunately, existing CG models provide a relatively poor description of thermodynamic properties. Moreover, CG models often demonstrate poor transferability, i.e., they require reparameterization for each system and environment of interest. These fundamental limitations severely curtail the predictive powers of current CG models. William Noid and his research group will derive, implement, and assess both theory and computational methods for ensuring that CG models are not only efficient, but also provide predictive accuracy and transferability for modeling soft materials, such as liquids and biomolecules. In addition, William Noid will continue developing an intergenerational science club that engages students of all ages in scientific discourse and discovery. William Noid and his research group will develop rigorous theory and robust computational methods for addressing fundamental limitations of bottom-up CG models. Noid and his research group will analyze the many-body potential of mean force (PMF) to reveal fundamental insight and derive practical approaches for improving both the transferability and the thermodynamic properties of bottom-up models. The resulting insight will inform a dual approach for addressing the density-dependence of CG pair potentials, as well as the temperature-and composition-dependence of many-body local density potentials. Noid and his research group will also investigate the dual approach for describing the thermodynamic driving forces for self-assembly with CG models. Noid and his research group will investigate the influence of the CG mapping upon the exact PMF and upon the properties of approximate CG models. Noid and his group will develop and distribute software for implementing these methods as part of the Bottom-up Open-source Coarse-graining Software (BOCS) package. Noid will provide mentorship and rigorous training for graduate students. Moreover, Noid and his group will develop an intergenerational science club that integrates local senior citizens, emeritus faculty, and undergraduate students in order to build bridges between the academic and civic communities, educate the public about contemporary scientific topics, share the joy of scientific discovery, and promote a healthy lifestyle of life-long learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
宾夕法尼亚州立大学的William Noid获得了化学系化学理论、模型和计算方法项目的奖励,以发展理论和计算方法,提高化学和材料科学中粗粒度模型的预测能力。原子详细的模拟提供了对分子结构,动力学和相互作用的精致见解。然而,由于其计算成本,原子详细的模拟只能有效地调查非常小的长度和时间尺度。相比之下,通过消除不必要的原子细节,粗粒度(CG)模型保证了模拟许多具有根本和技术意义的过程的必要效率,这些过程远远超出了原子详细模型的范围,例如,病毒侵入宿主细胞的机制或工业上重要聚合物的相行为。不幸的是,现有的CG模型提供了一个相对较差的热力学性质的描述。此外,CG模型通常表现出较差的可移植性,即,它们需要为每个系统和有关环境重新设定参数。这些基本限制严重削弱了当前CG模型的预测能力。William Noid和他的研究小组将推导、实施和评估理论和计算方法,以确保CG模型不仅有效,而且还为液体和生物分子等软材料建模提供预测准确性和可转移性。此外,William Noid将继续发展代际科学俱乐部,让所有年龄段的学生参与科学话语和发现。 William Noid和他的研究小组将开发严格的理论和强大的计算方法,以解决自下而上CG模型的基本局限性。Noid和他的研究小组将分析平均力(PMF)的多体势,以揭示基本见解,并推导出改进自下而上模型的可转移性和热力学性质的实用方法。由此产生的见解将为解决CG对势的密度依赖性以及多体局部密度势的温度和成分依赖性提供双重方法。Noid和他的研究小组还将研究用CG模型描述自组装热力学驱动力的双重方法。Noid和他的研究小组将研究CG映射对精确PMF和近似CG模型性质的影响。Noid和他的团队将开发和分发用于实现这些方法的软件,作为自底向上开源粗粒度软件(博茨)包的一部分。Noid将为研究生提供指导和严格的培训。此外,Noid和他的团队将建立一个跨代科学俱乐部,整合当地老年人,退休教师和本科生,以便在学术界和公民社区之间建立桥梁,教育公众了解当代科学主题,分享科学发现的喜悦,提倡健康的生活方式该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Insight into the Density-Dependence of Pair Potentials for Predictive Coarse-Grained Models
洞察预测粗粒度模型对势的密度依赖性
  • DOI:
    10.1021/acs.jpcb.3c06890
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lesniewski, Maria C.;Noid, W. G.
  • 通讯作者:
    Noid, W. G.
Surveying the energy landscape of coarse-grained mappings
  • DOI:
    10.1063/5.0182524
  • 发表时间:
    2024-02-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Kidder,Katherine M.;Shell,M. Scott;Noid,W. G.
  • 通讯作者:
    Noid,W. G.
A temperature-dependent length-scale for transferable local density potentials
可转移局部密度势的温度相关长度尺度
  • DOI:
    10.1063/5.0157815
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Szukalo, Ryan J.;Noid, W. G.
  • 通讯作者:
    Noid, W. G.
Perspective: Advances, Challenges, and Insight for Predictive Coarse-Grained Models
  • DOI:
    10.1021/acs.jpcb.2c08731
  • 发表时间:
    2023-05-07
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Noid,W. G.
  • 通讯作者:
    Noid,W. G.
Rigorous progress in coarse-graining
粗粒度的严格进展
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    14.7
  • 作者:
    Noid, W.G.;Szukalo, R.J.;Kidder, K.M.;Lesniewski, M.C.
  • 通讯作者:
    Lesniewski, M.C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Noid其他文献

William Noid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Noid', 18)}}的其他基金

Systematic coarse-graining of inhomogeneous systems
非均匀系统的系统粗粒度
  • 批准号:
    1856337
  • 财政年份:
    2019
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Continuing Grant
Van der Waals Approach to Systematic Coarse-Graining
系统粗粒度的范德华方法
  • 批准号:
    1565631
  • 财政年份:
    2016
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Standard Grant
CAREER: Variational Bridge between Knowledge-based and Physics-based Models - Applications to Ubiquilin Interactions
职业:基于知识和基于物理的模型之间的变分桥梁 - 泛素相互作用的应用
  • 批准号:
    1053970
  • 财政年份:
    2011
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Continuing Grant

相似海外基金

Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
  • 批准号:
    NE/Y001397/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Research Grant
Anti-infective therapeutics and predictive modelling to tackle Staphylococcus aureus disease
应对金黄色葡萄球菌疾病的抗感染疗法和预测模型
  • 批准号:
    EP/X022935/2
  • 财政年份:
    2024
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Fellowship
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Continuing Grant
Development of a predictive biomarker for Parkinson's disease
帕金森病预测生物标志物的开发
  • 批准号:
    MR/Y019415/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Research Grant
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
  • 批准号:
    2339999
  • 财政年份:
    2024
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Continuing Grant
Creating healthier homes for children with asthma:Developing a predictive model for environmental
为哮喘儿童创建更健康的家庭:开发环境预测模型
  • 批准号:
    2908612
  • 财政年份:
    2024
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Studentship
Predictive Assessment of Material Failure
材料失效的预测评估
  • 批准号:
    2904642
  • 财政年份:
    2024
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Studentship
CAREER: Predictive Multiscale Modeling of Cell Migration through Pores between Endothelial Cells
职业:通过内皮细胞之间的孔进行细胞迁移的预测多尺度建模
  • 批准号:
    2339054
  • 财政年份:
    2024
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Standard Grant
Mechanistic niche predictive modelling of plant invasion at the range front
山脉前沿植物入侵的机械生态位预测模型
  • 批准号:
    EP/Y028473/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.07万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了