CAREER: Engineering Human CNS Morphogenesis Ex Vivo: Spinal Cord

职业:工程人类中枢神经系统离体形态发生:脊髓

基本信息

  • 批准号:
    1651645
  • 负责人:
  • 金额:
    $ 54.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

PI: Ashton, Randolph S.Proposal #: 1651645The recently observed ability of combinations of human pluripotent stem cells (hPSCs) to spontaneously transform in vitro into "cerebral organoids" containing diverse brain tissues suggests the possibility that organoids can be engineered ex vivo to generate brain and spinal cord tissues with structure, composition and function (including neural circuits) that can mimic many features of the human Central Nervous System (CNS). The availability of controlled ex vivo CNS models can lead to platforms for 1) investigating human developmental biology and physiology, 2) investigating degenerative diseases and traumatic injury, 3) enhanced drug screening and personalized medicine and 4) eliminating the need for questionably relevant animal studies. The goal of this project is to develop methods for engineering human cord organoids displaying spinal cord grey matter architecture and CNS-like neuronal circuitry. Success could lead to a paradigm shift relative in spinal cord injury research and drug screening. The proposed methods can be implemented to engineer diverse neural, heart, and gut organoids. The education and outreach plan includes: 1) development of a comprehensive "Stem cell-based Tissue Engineering & Morphogenesis (STEM)" website to serve as an educational resource for BME courses and middle and high school teachers and as a site for sharing research findings, 2) outreach programs designed to expose underrepresented minority (URM) students, including at elementary and middle school levels, to STEM experiences and 3) creation of a live "Building a Human Spinal Cord" exhibit to engage the public in stem cell and tissue engineering research.This project will use innovative culture platforms to develop standardized methodologies for reproducibly engineering human spinal cord organoids, chosen due the spinal cord's comparatively simplified tissue morphology. The Research Plan is organized under 3 objectives with related hypotheses: 1) Engineer human neural organoids with posterior neural tube (PNT) tissue structure--The hypothesis that spatial control of organoid morphology at developmental length scales can induce biomimetic tissue structure will be tested using a novel molding technology to develop a standardized methodology for engineer annular tubes of polarized, hPSC-derived neural stem cells (hNSCs), which is mimetic of early PNT structure, 2) Engineer human neural organoids with dorsoventral (D/V) cytoarchitecture mimetic of spinal cord grey matter tissue--The hypothesis that exogenous morphogen gradients can be applied to instruct biomimetic cellular composition and tissue cytoarchitecture within organoids will be tested using novel "Stamp-On" microfluidics to generate analogous morphogen gradients and investigate whether they can recapitulate D/V patterning of biomimetic cellular composition and cytoarchitecture within cylindrical hNSC organoids and 3) Engineer human neural organoids with rostrocaudal (R/C) cytoarchitecture mimetic of spinal cord grey matter tissue--The hypothesis that directed assembly of neural organoid tissues can induce formation of biomimetic neural will be tested by using organoids generated from cervical, thoracic, and lumbar hNSCs and testing whether their directed assembly yields a composite spinal cord organoid with biomimetic R/C tissue cytoarchitecture and functional neuronal circuitry. The 4th objective is to promote development of a diverse workforce for future hPSC-based tissue engineering industries by integrating a multifaceted approach for inspiring and educating the general public and students, especially underrepresented minorities. Though Human PSC-derived organoids possess tremendous possibilities for modeling human biology and physiology, their utility is limited by a lack of control over their spontaneous morphogenesis processes, which produces random organoid structure and composition. Using a spinal cord organoid exemplar, this project will develop novel tools and methodologies for engineering human organoid morphogenesis at the micro-to-millimeter scale. Instructing reproducible ex vivo morphogenesis at this scale is critical for developing advanced biomanufacturing processes to produce functional, biomimetic tissues and organs. Engineering parameters identified as critical to instructing emergence of biomimetic 3-D spinal organoids could elucidate broadly applicable morphogenesis engineering principles and provide new insights into CNS development and disease. The tools and knowledge generated will significantly advance scientists' ability to engineer biomimetic human tissues, specifically providing the most humanoid experimental platform to date for investigating degenerative spinal cord diseases and traumatic injury. The proposed tools and methods are designed for simplicity, thus can be broadly disseminated and implemented for engineer human organoids. Captivating data and explanations of human organoid morphogenesis will be curated as an online educational resource and introduced to the general public and students to promote political support, interests, and workforce development.
主要研究者:Ashton,兰多夫S.提案编号:最近观察到的人多能干细胞(hPSC)的组合在体外自发转化为含有不同脑组织的“脑类器官”的能力表明类器官可以离体工程化以产生具有以下结构的脑和脊髓组织的可能性:组成和功能(包括神经回路),可以模仿人类中枢神经系统(CNS)的许多特征。 受控的离体CNS模型的可用性可以产生用于以下的平台:1)研究人类发育生物学和生理学,2)研究退行性疾病和创伤性损伤,3)增强药物筛选和个性化医学,以及4)消除对可疑相关动物研究的需要。 该项目的目标是开发用于展示脊髓灰质结构和CNS样神经元回路的人类脊髓类器官的工程方法。 成功可能会导致脊髓损伤研究和药物筛选的范式转变。 所提出的方法可以用于设计不同的神经、心脏和肠道类器官。 教育和推广计划包括:1)开发一个全面的“基于干细胞的组织工程&形态发生(STEM)”网站,作为BME课程和初中和高中教师的教育资源,并作为分享研究成果的网站,2)旨在暴露代表性不足的少数民族(URM)学生的推广计划,包括小学和中学,到STEM经验和3)创建一个活的“建立一个人类脊髓”展览吸引公众参与干细胞和组织工程研究。该项目将使用创新的培养平台开发标准化方法,用于可重复工程化人类脊髓类器官,选择它是因为脊髓的组织形态相对简单。研究计划分为3个目标,并有相关假设:1)工程化具有后神经管(PNT)组织结构的人类神经类器官-将使用新的模制技术来测试在发育长度尺度上对类器官形态的空间控制可以诱导仿生组织结构的假设,以开发用于工程化极化的hPSC衍生的神经干细胞(hNSC)的环形管的标准化方法,它是早期PNT结构的模拟物,2)用脊髓灰质组织的背腹侧(D/V)细胞结构模拟物工程化人类神经类器官-外源性形态发生梯度可以应用于指导类器官内的仿生细胞组成和组织细胞结构的假设将使用新的“Stamp-On”微流体来测试,以产生类似的形态发生梯度,并研究它们是否可以重现D/V细胞结构。在圆柱形hNSC类器官内仿生细胞组成和细胞结构的V型图案化和3)用脊髓灰质组织的吻尾(R/C)细胞结构模拟物工程化人神经类器官-神经类器官组织的定向组装可以诱导仿生神经类器官形成的假设将通过使用从颈部、胸部、和腰椎hNSC,并测试它们的定向组装是否产生具有仿生R/C组织细胞结构和功能性神经元回路的复合脊髓类器官。 第四个目标是通过整合多方面的方法来激励和教育公众和学生,特别是代表性不足的少数民族,促进未来基于hPSC的组织工程行业的多元化劳动力的发展。 虽然人类PSC衍生的类器官具有建模人类生物学和生理学的巨大可能性,但它们的实用性受到对其自发形态发生过程缺乏控制的限制,这会产生随机的类器官结构和组成。使用脊髓类器官样本,该项目将开发新的工具和方法,用于在微米至毫米尺度上设计人类类器官形态发生。指导这种规模的可重复的离体形态发生对于开发先进的生物制造工艺以产生功能性仿生组织和器官至关重要。被确定为指导仿生3-D脊柱类器官出现的关键工程参数可以阐明广泛适用的形态发生工程原理,并为CNS发育和疾病提供新的见解。 所产生的工具和知识将大大提高科学家设计仿生人体组织的能力,特别是为研究退行性脊髓疾病和创伤性损伤提供迄今为止最人性化的实验平台。所提出的工具和方法是为了简单而设计的,因此可以广泛传播和实施,用于工程人类类器官。人类类器官形态发生的迷人数据和解释将作为在线教育资源进行策划,并介绍给公众和学生,以促进政治支持,利益和劳动力发展。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Micro-injection molded, poly(vinyl alcohol)-calcium salt templates for precise customization of 3D hydrogel internal architecture
  • DOI:
    10.1016/j.actbio.2019.04.050
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    McNulty, Jason D.;Marti-Figueroa, Carlos;Ashton, Randolph S.
  • 通讯作者:
    Ashton, Randolph S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Randolph Ashton其他文献

Self-organization of mouse embryonic stem cells into reproducible pre-gastrulation embryo models via CRISPRa programming
通过CRISPRa编程将小鼠胚胎干细胞自组织成可重现的原肠胚形成前胚胎模型
  • DOI:
    10.1016/j.stem.2025.02.015
  • 发表时间:
    2025-06-05
  • 期刊:
  • 影响因子:
    20.400
  • 作者:
    Gerrald A. Lodewijk;Sayaka Kozuki;Clara J. Han;Benjamin R. Topacio;Seungho Lee;Lily Nixon;Abolfazl Zargari;Gavin Knight;Randolph Ashton;Lei S. Qi;S. Ali Shariati
  • 通讯作者:
    S. Ali Shariati

Randolph Ashton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Multi-platform pipeline for engineering human knee joint function
用于工程人体膝关节功能的多平台管道
  • 批准号:
    EP/X039870/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.06万
  • 项目类别:
    Research Grant
Multi-platform pipeline for engineering human knee joint function
用于工程人体膝关节功能的多平台管道
  • 批准号:
    EP/X04002X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.06万
  • 项目类别:
    Research Grant
CAREER: Problem Partitioning and Division of Labor for Human-Computer Collaboration in Engineering Design
职业:工程设计中人机协作的问题划分与分工
  • 批准号:
    2339546
  • 财政年份:
    2024
  • 资助金额:
    $ 54.06万
  • 项目类别:
    Standard Grant
Learning from the thymic human cell atlas for T cell engineering
从人类胸腺细胞图谱中学习 T 细胞工程
  • 批准号:
    EP/Y02978X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 54.06万
  • 项目类别:
    Research Grant
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
  • 批准号:
    10667938
  • 财政年份:
    2023
  • 资助金额:
    $ 54.06万
  • 项目类别:
Learning from the thymic human cell atlas for T cell engineering
从人类胸腺细胞图谱中学习 T 细胞工程
  • 批准号:
    EP/Y02978X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 54.06万
  • 项目类别:
    Research Grant
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
  • 批准号:
    2332366
  • 财政年份:
    2023
  • 资助金额:
    $ 54.06万
  • 项目类别:
    Standard Grant
Understand the uncertainties and their effects in future human-machine engineering systems
了解未来人机工程系统的不确定性及其影响
  • 批准号:
    2892822
  • 财政年份:
    2023
  • 资助金额:
    $ 54.06万
  • 项目类别:
    Studentship
Engineering a Human Skeletal Muscle Tissue Model of LGMD2B
设计 LGMD2B 的人体骨骼肌组织模型
  • 批准号:
    10719721
  • 财政年份:
    2023
  • 资助金额:
    $ 54.06万
  • 项目类别:
A Model for Human-Centered Engineering Education: Broadening Engineering Teaching with Theory-based Educational Resources (BETTER)
以人为本的工程教育模式:利用基于理论的教育资源拓宽工程教学(更好)
  • 批准号:
    2236075
  • 财政年份:
    2023
  • 资助金额:
    $ 54.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了