CAREER: Automatic Speech-Based Longitudinal Emotion and Mood Recognition for Mental Health Monitoring and Treatment
职业:基于语音的自动纵向情感和情绪识别,用于心理健康监测和治疗
基本信息
- 批准号:1651740
- 负责人:
- 金额:$ 54.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Effective treatment and monitoring for individuals with mental health disorders is an enduring societal challenge. Regular monitoring increases access to preventative treatment, but is often cost prohibitive or infeasible given high demands placed on health care providers. Yet, it is critical for individuals with Bipolar Disorder (BPD), a chronic psychiatric illness characterized by mood transitions between healthy and pathological states. Transitions into pathological states are associated with profound disruptions in personal, social, vocational functioning, and emotion regulation. This Faculty Early Career Development Program (CAREER) project investigates new approaches in speech-based mood monitoring by taking advantage of the link between speech, emotion, and mood. The approach includes processing data with short-term variation (speech), estimating mid-term variation (emotion), and then using patterns in emotion to recognize long-term variation (mood). The educational outreach includes a design challenge, created with Iridescent, a science education nonprofit, that teaches emotion recognition to underserved children and their parents in informal learning settings. The research investigates methods to model naturalistic, longitudinal speech data and associate emotion patterns with mood, addressing current challenges in speech emotion recognition and assistive technology that include: generalizability, robustness, and performance. The approaches generalize to conditions whose symptoms include atypical emotion, such as post-traumatic stress disorder, anxiety, depression, and stress. The research forwards emotion as an intermediate step to simplify the mapping between speech and mood; emotion dysregulation is a common BPD symptom. Emotion is quantified over time in terms of valence and activation to improve generalizability. Nuisance modulations are controlled to improve robustness. Together, they result in a set of low-dimensional secondary features whose variations are due to emotion. These secondary features are segmented to create a coarser temporal description of emotion. This provides a means to map between speech (a quickly varying signal) and user state (a slowly varying signal), advancing the state-of-the-art. The results provide quantitative insight into the relationship between emotion variation and user state variation, providing new directions and links between the fields of emotion recognition and assistive technology. The focus on modeling emotional data using time series techniques results in breakthroughs in the design of emotion recognition and assistive technology algorithms.
对精神健康障碍患者进行有效治疗和监测是一项持久的社会挑战。定期监测可增加获得预防性治疗的机会,但由于对卫生保健提供者的高要求,往往成本过高或不可行。然而,它对双相情感障碍(BPD)患者至关重要,BPD是一种慢性精神疾病,以健康状态和病理状态之间的情绪转变为特征。向病理状态的转变与个人、社会、职业功能和情绪调节的深刻破坏有关。这个教师早期职业发展计划(Career)项目通过利用语言、情感和情绪之间的联系,研究基于语言的情绪监测的新方法。该方法包括处理短期变化(言语)的数据,估计中期变化(情绪),然后利用情绪模式识别长期变化(情绪)。教育推广活动包括一个设计挑战,由非营利科学教育机构彩虹(Iridescent)合作,在非正式的学习环境中向缺乏教育的儿童及其父母教授情感识别。本研究探讨了自然的、纵向的语音数据建模方法,并将情感模式与情绪联系起来,解决了语音情感识别和辅助技术当前面临的挑战,包括:可泛化性、鲁棒性和性能。这些方法可以推广到症状包括非典型情绪的情况,如创伤后应激障碍、焦虑、抑郁和压力。研究提出情绪是简化言语与情绪映射的中间步骤;情绪失调是常见的BPD症状。随着时间的推移,情绪在效价和激活方面被量化,以提高归纳性。干扰调制被控制以提高鲁棒性。总之,它们形成了一系列低维度的次要特征,这些特征的变化是由情绪引起的。这些次要特征被分割,以创建更粗略的情感时间描述。这提供了一种在语音(快速变化的信号)和用户状态(缓慢变化的信号)之间进行映射的方法,从而推进了最先进的技术。研究结果为情绪变化与用户状态变化之间的关系提供了定量的洞察,为情绪识别和辅助技术领域之间的联系提供了新的方向和联系。使用时间序列技术对情感数据建模的关注导致了情感识别和辅助技术算法设计的突破。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Read speech voice quality and disfluency in individuals with recent suicidal ideation or suicide attempt
阅读最近有自杀意念或自杀企图的个人的语音质量和不流畅性
- DOI:10.1016/j.specom.2021.05.004
- 发表时间:2021
- 期刊:
- 影响因子:3.2
- 作者:Stasak, Brian;Epps, Julien;Schatten, Heather T.;Miller, Ivan W.;Provost, Emily Mower;Armey, Michael F.
- 通讯作者:Armey, Michael F.
Self-Ensembling Attention Networks: Addressing Domain Shift for Semantic Segmentation
- DOI:10.1609/aaai.v33i01.33015581
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Yonghao Xu;Bo Du;Lefei Zhang;Qian Zhang;Guoli Wang;Liangpei Zhang
- 通讯作者:Yonghao Xu;Bo Du;Lefei Zhang;Qian Zhang;Guoli Wang;Liangpei Zhang
Predicting the distribution of emotion perception: capturing inter-rater variability
- DOI:10.1145/3136755.3136792
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:Biqiao Zhang;Georg Essl;E. Provost
- 通讯作者:Biqiao Zhang;Georg Essl;E. Provost
MuSE: a Multimodal Dataset of Stressed Emotion
- DOI:
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Mimansa Jaiswal;Cristian-Paul Bara;Y. Luo;Mihai Burzo;Rada Mihalcea;E. Provost
- 通讯作者:Mimansa Jaiswal;Cristian-Paul Bara;Y. Luo;Mihai Burzo;Rada Mihalcea;E. Provost
Towards Noise Robust Speech Emotion Recognition Using Dynamic Layer Customization
- DOI:10.1109/acii52823.2021.9597437
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Alex Wilf;E. Provost
- 通讯作者:Alex Wilf;E. Provost
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Provost其他文献
Emily Provost的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Provost', 18)}}的其他基金
RI: Small: Advancing the Science of Generalizable and Personalizable Speech-Centered Self-Report Emotion Classifiers
RI:小:推进以语音为中心的可概括和个性化的自我报告情绪分类器的科学
- 批准号:
2230172 - 财政年份:2022
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
RI: Small: Speech-Centered Robust and Generalizable Measurements of "In the Wild" Behavior for Mental Health Symptom Severity Tracking
RI:小:以语音为中心的稳健且可概括的“野外”行为测量,用于心理健康症状严重程度跟踪
- 批准号:
2006618 - 财政年份:2020
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
A Workshop for Young Female Researchers in Speech Science and Technology
语音科学与技术领域年轻女性研究人员研讨会
- 批准号:
1835284 - 财政年份:2018
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
WORKSHOP: Doctoral Consortium at the International Conference on Multimodal Interaction (ICMI 2016)
研讨会:多模式交互国际会议上的博士联盟 (ICMI 2016)
- 批准号:
1641044 - 财政年份:2016
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Exploring Audiovisual Emotion Perception using Data-Driven Computational Modeling
RI:小型:协作研究:使用数据驱动的计算模型探索视听情感感知
- 批准号:
1217183 - 财政年份:2012
- 资助金额:
$ 54.88万 - 项目类别:
Continuing Grant
相似海外基金
From corpus to target data as steps for automatic assessment of L2 speech: L2 French phonological lexicon of Japanese learners
从语料库到目标数据作为 L2 语音自动评估的步骤:日语学习者的 L2 法语语音词典
- 批准号:
23K20100 - 财政年份:2024
- 资助金额:
$ 54.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Disrupter or enabler? Assessing the impact of using automatic speech recognition technology in interpreter-mediated legal proceedings
颠覆者还是推动者?
- 批准号:
2889440 - 财政年份:2023
- 资助金额:
$ 54.88万 - 项目类别:
Studentship
Automatic detection and modelling of acoustic markers of speech timing
语音计时声学标记的自动检测和建模
- 批准号:
DP230101184 - 财政年份:2023
- 资助金额:
$ 54.88万 - 项目类别:
Discovery Projects
Industrial research into the reduction of biases in foundational Automatic Speech Recognition models.
减少基础自动语音识别模型中偏差的工业研究。
- 批准号:
10068091 - 财政年份:2023
- 资助金额:
$ 54.88万 - 项目类别:
Collaborative R&D
Automatic pronunciation and prosody evaluation based on longitudinal analysis of English speech produced by Japanese children
基于日本儿童英语语音纵向分析的自动发音和韵律评估
- 批准号:
23H00648 - 财政年份:2023
- 资助金额:
$ 54.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Automatic Speech Recognition (ASR) engine to improve autistic children speech
自动语音识别(ASR)引擎可改善自闭症儿童的言语能力
- 批准号:
10056712 - 财政年份:2023
- 资助金额:
$ 54.88万 - 项目类别:
Grant for R&D
A State-of-the-Art Automatic Speech Recognition and Conversational Platform to Enable Socially Assistive Robots for Persons with Alzheimer's Disease and Related Dementias
最先进的自动语音识别和对话平台,为阿尔茨海默病和相关痴呆症患者提供社交辅助机器人
- 批准号:
10699887 - 财政年份:2023
- 资助金额:
$ 54.88万 - 项目类别:
FAI: A New Paradigm for the Evaluation and Training of Inclusive Automatic Speech Recognition
FAI:包容性自动语音识别评估和训练的新范式
- 批准号:
2147350 - 财政年份:2022
- 资助金额:
$ 54.88万 - 项目类别:
Standard Grant
More efficient and accurate automatic speech recognition
自动语音识别更高效、准确
- 批准号:
RGPIN-2018-05226 - 财政年份:2022
- 资助金额:
$ 54.88万 - 项目类别:
Discovery Grants Program - Individual
More efficient and accurate automatic speech recognition
自动语音识别更高效、准确
- 批准号:
RGPIN-2018-05226 - 财政年份:2021
- 资助金额:
$ 54.88万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




