RI: Small: Speech-Centered Robust and Generalizable Measurements of "In the Wild" Behavior for Mental Health Symptom Severity Tracking

RI:小:以语音为中心的稳健且可概括的“野外”行为测量,用于心理健康症状严重程度跟踪

基本信息

项目摘要

Bipolar disorder is a common and chronic illness characterized by pathological swings from euthymia (healthy) to mania (heightened energy) and depression (lowered energy). Mood transitions are associated with profound consequences to one's personal, social, vocational, and financial well-being. Current management is clinic-based and dependent on provider-patient interactions. Yet, increased demand for services has surpassed capacity, calling for radical changes in the delivery of care. This project will create new algorithms that can process speech data naturally collected from smartphone use to measure behavior and changes in behaviors and to associate these measurements with the severity of the symptoms of bipolar disorder. This will lead to the creation of new early warning signs, indications that clinical intervention is needed. Natural behavior provides a wealth of information about the health an individual. However, when assessing health, clinicians typically access cross-sectional medical data at point-of-care that is based on traditional medical methods (exams, labs, and surveys). Next generation 'precision health' depends on an inclusive and holistic approach that captures changes in health as people live their lives. This is highly relevant as 130 million Americans live with chronic disease and need efficient monitoring strategies. Speech is a promising medium for monitoring mood. Clinicians subjectively assess both form and content of speech when evaluating human disease, as speech is altered by changes in mood and health states. Yet, while speech is easy to record, speech-centered mobile monitoring solutions are not currently publicly available. The technology is neither sufficiently accurate nor robust. The central challenge is the signal itself: speech is inherently variable and complex. Existing techniques are insufficient to handle this complexity, limiting the accuracy and robustness of speech-centered mood monitoring technologies. This project will create novel and robust approaches to extracting mood symptom severity measures from speech. Mood is clinically quantified via the Hamilton Depression Rating Scale (HamD) and the Young Mania Rating Scale (YMRS). The technology focuses on the creation of methods that accurately extract symptom-focused measures, whose variation lies between that of speech and mood severity, and that are robust to conditions, both environmental and social, in which the data were recorded. The methods will be validated on an existing natural speech dataset at the University of Michigan. The unification will provide critical steps towards speech-centered mHealth solutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
双相情感障碍是一种常见的慢性疾病,其特征是从正常情绪(健康)到躁狂(能量升高)和抑郁(能量降低)的病理波动。 情绪转变与个人,社会,职业和财务福祉的深远影响有关。 目前的管理是基于临床的,并依赖于提供者与患者的互动。然而,对服务的需求增加超过了能力,要求对提供护理进行根本性的改革。 该项目将创建新的算法,可以处理从智能手机使用中自然收集的语音数据,以测量行为和行为变化,并将这些测量结果与双相情感障碍症状的严重程度相关联。 这将导致产生新的早期预警信号,表明需要进行临床干预。 自然行为提供了大量关于个人健康的信息. 然而,在评估健康状况时,临床医生通常会在护理点访问基于传统医疗方法(检查、实验室和调查)的横断面医疗数据。 下一代“精准健康”依赖于一种包容性和整体性的方法,这种方法可以捕捉人们生活中的健康变化。这是非常相关的,因为1.3亿美国人患有慢性病,需要有效的监测策略。言语是一种很有前途的监测情绪的媒介。临床医生在评估人类疾病时主观地评估言语的形式和内容,因为言语会因情绪和健康状态的变化而改变。然而,虽然语音很容易记录,但以语音为中心的移动的监控解决方案目前尚未公开。 这项技术既不够准确,也不够强大。 最大的挑战是信号本身:语音本质上是可变的和复杂的。 现有技术不足以处理这种复杂性,限制了以语音为中心的情绪监测技术的准确性和鲁棒性。该项目将创建新颖而强大的方法来从语音中提取情绪症状严重程度。通过汉密尔顿抑郁评定量表(HamD)和杨氏躁狂评定量表(YMRS)对情绪进行临床量化。 该技术专注于创建准确提取以情绪为中心的测量方法,其变化介于语音和情绪严重程度之间,并且对记录数据的环境和社会条件都具有鲁棒性。 这些方法将在密歇根大学现有的自然语音数据集上进行验证。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Engineering View on Emotions and Speech: From Analysis and Predictive Models to Responsible Human-Centered Applications
  • DOI:
    10.1109/jproc.2023.3276209
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    20.6
  • 作者:
    Shrikanth S. Narayanan
  • 通讯作者:
    Shrikanth S. Narayanan
Capturing Mismatch between Textual and Acoustic Emotion Expressions for Mood Identification in Bipolar Disorder
  • DOI:
    10.21437/interspeech.2023-1990
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minxue Niu;Amrit Romana;Mimansa Jaiswal;M. McInnis;Emily Mower Provost
  • 通讯作者:
    Minxue Niu;Amrit Romana;Mimansa Jaiswal;M. McInnis;Emily Mower Provost
Learning Paralinguistic Features from Audiobooks through Style Voice Conversion
  • DOI:
    10.18653/v1/2021.naacl-main.377
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zakaria Aldeneh;Matthew Perez;Emily Mower Provost
  • 通讯作者:
    Zakaria Aldeneh;Matthew Perez;Emily Mower Provost
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Provost其他文献

Emily Provost的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Provost', 18)}}的其他基金

RI: Small: Advancing the Science of Generalizable and Personalizable Speech-Centered Self-Report Emotion Classifiers
RI:小:推进以语音为中心的可概括和个性化的自我报告情绪分类器的科学
  • 批准号:
    2230172
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
A Workshop for Young Female Researchers in Speech Science and Technology
语音科学与技术领域年轻女性研究人员研讨会
  • 批准号:
    1835284
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Automatic Speech-Based Longitudinal Emotion and Mood Recognition for Mental Health Monitoring and Treatment
职业:基于语音的自动纵向情感和情绪识别,用于心理健康监测和治疗
  • 批准号:
    1651740
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
WORKSHOP: Doctoral Consortium at the International Conference on Multimodal Interaction (ICMI 2016)
研讨会:多模式交互国际会议上的博士联盟 (ICMI 2016)
  • 批准号:
    1641044
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Exploring Audiovisual Emotion Perception using Data-Driven Computational Modeling
RI:小型:协作研究:使用数据驱动的计算模型探索视听情感感知
  • 批准号:
    1217183
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

RI: Small: Advancing the Science of Generalizable and Personalizable Speech-Centered Self-Report Emotion Classifiers
RI:小:推进以语音为中心的可概括和个性化的自我报告情绪分类器的科学
  • 批准号:
    2230172
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: From Ultrasound and MRI to articulatory and acoustic models of child speech development
合作研究:RI:小型:从超声和 MRI 到儿童言语发展的发音和声学模型
  • 批准号:
    2006979
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: From ultrasound and MRI to articulatory and acoustic models of child speech development
合作研究:RI:小型:从超声和 MRI 到儿童言语发展的发音和声学模型
  • 批准号:
    2006818
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Automatic Creation of New Speech Sound Inventories
RI:小型:协作研究:自动创建新语音库存
  • 批准号:
    1909075
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Automatic Creation of New Speech Sound Inventories
RI:小型:协作研究:自动创建新语音库存
  • 批准号:
    1910319
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: From acoustics to semantics: Embedding speech for a hierarchy of tasks
RI:小:从声学到语义:为任务层次结构嵌入语音
  • 批准号:
    1816627
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
RI: Small: Integrative, Semantic-Aware, Speech-Driven Models for Believable Conversational Agents with Meaningful Behaviors
RI:小型:集成的、语义感知的、语音驱动的模型,用于具有有意义行为的可信会话代理
  • 批准号:
    1718944
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Creating Text-to-Speech Synthesis for Low Resource Languages
RI:小型:为低资源语言创建文本到语音合成
  • 批准号:
    1717680
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Modeling Idiosyncrasies of Speech for Automatic Spoken Language Processing
RI:小:为自动口语处理建模语音特质
  • 批准号:
    1617176
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Concatenative Resynthesis for Very High Quality Speech Enhancement
RI:小:用于非常高质量语音增强的串联再合成
  • 批准号:
    1618061
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了