CAREER: Belief Space Planning and Learning for Uncertainty-Immersed Underwater Robots
职业:不确定性浸入式水下机器人的信念空间规划和学习
基本信息
- 批准号:1652064
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Earth's oceans and rivers are very important to our lives, and it is important to understand them in detail, such as how their current flows change over time. While it is difficult to develop detailed models of current flow from first principles, good approximations can be constructed. These coarse models can then be used by an autonomous underwater robot to plan and execute paths. By collecting data during its traversals of the environment, more detailed models can be learned, tested in simulation, and then used to make the robot's actions more reliable. This project will also contribute to the curriculum of WaterBotics, a K-12 program that exposes thousands of students to engineering principles via hands-on learning with underwater robots. The results of the proposed research will be integrated into new educational modules for this program.This project uses reinforcement learning, which has been successfully applied in learning robotic skills, to learn the dynamics of an expansive environment. Specifically, reinforcement learning will be adapted to deal with acoustic sensors whose probability distributions, due to physical disturbances and multi-path returns, vary sharply throughout the environment. The properties of these phenomena are not initially known with high accuracy, but will be learned as the robot patrols. Specifically, with a coarse initial model as a starting point, optimal policies for maneuvering and patrolling under such phenomena will be learned through a combination of planning, simulation, and physical repetition. Model-based belief space motion planning will be used to bootstrap and accelerate the episodic learning of optimal policies. The work will employ a novel belief-space planning metric that reduces the computational complexity of planning both at coarse, global scales and at fine, local scales.
地球上的海洋和河流对我们的生活非常重要,详细了解它们非常重要,例如它们的水流如何随时间变化。 虽然很难从第一原理开发详细的电流模型,但可以构建良好的近似。 这些粗糙的模型,然后可以使用的自主水下机器人计划和执行路径。 通过在穿越环境期间收集数据,可以学习更详细的模型,在仿真中进行测试,然后用于使机器人的行动更加可靠。 该项目还将为WaterBotics的课程做出贡献,这是一个K-12计划,通过与水下机器人的实践学习,使数千名学生了解工程原理。研究成果将被整合到该项目的新教育模块中。该项目使用已成功应用于学习机器人技能的强化学习来学习广阔环境的动态。具体而言,强化学习将适用于处理由于物理干扰和多路径返回而导致概率分布在整个环境中急剧变化的声学传感器。这些现象的性质最初并不知道高精度,但将学习机器人巡逻。具体而言,以粗略的初始模型为起点,将通过规划、模拟和物理重复的组合来学习在这种现象下的机动和巡逻的最佳策略。基于模型的信念空间运动规划将用于引导和加速最优策略的情景学习。这项工作将采用一种新型的信念空间规划度量,可以降低粗略的全球规模和精细的局部规模规划的计算复杂性。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Zero-Shot Reinforcement Learning on Graphs for Autonomous Exploration Under Uncertainty
不确定性下自主探索的图零样本强化学习
- DOI:10.1109/icra48506.2021.9561917
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chen, Fanfei;Szenher, Paul;Huang, Yewei;Wang, Jinkun;Shan, Tixiao;Bai, Shi;Englot, Brendan
- 通讯作者:Englot, Brendan
DiSCo-SLAM: Distributed Scan Context-Enabled Multi-Robot LiDAR SLAM With Two-Stage Global-Local Graph Optimization
- DOI:10.1109/lra.2021.3138156
- 发表时间:2022-04-01
- 期刊:
- 影响因子:5.2
- 作者:Huang, Yewei;Shan, Tixiao;Englot, Brendan
- 通讯作者:Englot, Brendan
Sparse Gaussian Process Temporal Difference Learning for Marine Robot Navigation
- DOI:
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:John D. Martin;Jinkun Wang;Brendan Englot
- 通讯作者:John D. Martin;Jinkun Wang;Brendan Englot
Virtual Maps for Autonomous Exploration of Cluttered Underwater Environments
用于自主探索杂乱水下环境的虚拟地图
- DOI:10.1109/joe.2022.3153897
- 发表时间:2022
- 期刊:
- 影响因子:4.1
- 作者:Wang, Jinkun;Chen, Fanfei;Huang, Yewei;McConnell, John;Shan, Tixiao;Englot, Brendan
- 通讯作者:Englot, Brendan
Autonomous Exploration Under Uncertainty via Graph Convolutional Networks
通过图卷积网络进行不确定性下的自主探索
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Chen, Fanfei;Wang, Jinkun;Shan, Tixiao;Englot, Brendan
- 通讯作者:Englot, Brendan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan Englot其他文献
Chapter 8 Simultaneous Localization and Mapping in Marine Environments
第 8 章 海洋环境中的同步定位与测绘
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Fallon;H. Johannsson;M. Kaess;J. Folkesson;H. McClelland;Brendan Englot;F. Hover;J. Leonard - 通讯作者:
J. Leonard
Sampling-Based Coverage Path Planning for Inspection of Complex Structures
用于复杂结构检查的基于采样的覆盖路径规划
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Brendan Englot;F. Hover - 通讯作者:
F. Hover
Inspection planning for sensor coverage of 3D marine structures
3D 海洋结构传感器覆盖范围的检查计划
- DOI:
10.1109/iros.2010.5648908 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Brendan Englot;F. Hover - 通讯作者:
F. Hover
Planning Complex Inspection Tasks Using Redundant Roadmaps
使用冗余路线图规划复杂的检查任务
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Brendan Englot;F. Hover - 通讯作者:
F. Hover
A Receding Horizon Multi-Objective Planner for Autonomous Surface Vehicles in Urban Waterways
城市水道自主水面车辆的后退多目标规划器
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Tixiao Shan;Wei Wang;Brendan Englot;C. Ratti;D. Rus - 通讯作者:
D. Rus
Brendan Englot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan Englot', 18)}}的其他基金
S&AS: FND: Learning-Enabled Autonomous 3D Exploration for Underwater Robots
S
- 批准号:
1723996 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
EAGER: Toward Descriptive Mapping for Underwater Exploration
EAGER:走向水下探索的描述性绘图
- 批准号:
1551391 - 财政年份:2015
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
相似海外基金
Decision Regarding Aspiration, Belief, and Social Economic Status in Education and Job Market
关于教育和就业市场的愿望、信仰和社会经济地位的决定
- 批准号:
2858422 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Studentship
Doctoral Dissertation Research in Economics: Belief Formation and Adaptation to Climate Change
经济学博士论文研究:信念的形成与气候变化的适应
- 批准号:
2242263 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Paranoia and Bias in Social Belief Updating in Clinical High Risk for Psychosis
精神病临床高危人群的偏执和社会信仰偏见更新
- 批准号:
10750091 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
In the Name of God: Examining how religious belief and practice influences violent behaviours within NRMs through the study of politically violent gro
以上帝之名:通过研究政治暴力群体,审视宗教信仰和实践如何影响 NRM 内的暴力行为
- 批准号:
2890665 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Studentship
Effects of language background and belief on goal-oriented reading: An empirical study
语言背景和信念对目标导向阅读的影响:一项实证研究
- 批准号:
23K00683 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling the dynamics of belief formation: Towards a computational understanding of the timing and accuracy of probability judgments
对信念形成的动态进行建模:对概率判断的时间和准确性进行计算理解
- 批准号:
2350258 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
DDRIG in DRMS: Measuring Persuasion Without Measuring a Prior Belief: A New Application of Planned Missing Data Techniques
DRMS 中的 DDRIG:在不衡量先验信念的情况下衡量说服力:计划丢失数据技术的新应用
- 批准号:
2242100 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Bilinear Inference Based on Belief Propagation for Non-Orthogonal Multiple Access with Massive IoT Devices
基于置信传播的海量物联网设备非正交多址双线性推理
- 批准号:
23K13335 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Norms of Belief and Assertion Investigated by the Methods of Language Analysis and Experimental Philosophy
语言分析和实验哲学方法研究的信念和断言规范
- 批准号:
23K00010 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Belief in mind-body dualism and mental health: The case of body-image issues among social-media users.
对身心二元论和心理健康的信仰:社交媒体用户中身体形象问题的案例。
- 批准号:
2891113 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Studentship