S&AS: FND: Learning-Enabled Autonomous 3D Exploration for Underwater Robots
S
基本信息
- 批准号:1723996
- 负责人:
- 金额:$ 35.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are often high costs and safety risks associated with humans performing work underwater, which is frequently required to inspect the health of our subsea infrastructure and environment. This motivates a need for smart and taskable autonomous robots that can monitor and inspect the subsea environment, as well as explore their surroundings when they do not have access to an accurate prior model. Without precise instructions on where and how to explore, the ideal taskable robot should be able to produce comprehensive, accurate maps of its surroundings, make repeated decisions about where to travel next, and ensure that it avoids collisions in the process of doing so. This project will leverage machine learning techniques to produce and deploy new algorithms with the potential to enhance both the speed and efficiency with which underwater robots explore unknown environments, and to enable further gains in performance as the exploring robots gain more experience.Specifically, this project will introduce machine learning techniques to (1) build more descriptive occupancy maps from the sparse and noisy sonar data that typifies the subsea domain; (2) to save computational effort in the potentially exhaustive evaluation of many candidate sensing actions; and (3) to learn effective behaviors for exploring complex, unstructured environments that truly require three-dimensional spatial reasoning. The real-time, 3D exploration task will be managed in concert with other relevant objectives, such as minimizing localization and map uncertainty, and the time and energy expenditures associated with travel. A related goal is to develop robot systems whose performance improves with experience, dynamically choosing the most effective decision-making tools in its portfolio and self-parameterizing the most appropriate map representations for the task at hand.
人类在水下作业往往存在高昂的成本和安全风险,经常需要检查我们海底基础设施和环境的健康状况。这促使对智能和可执行任务的自主机器人的需求,这些机器人可以监测和检查海底环境,以及在无法获得准确的先前模型时探索周围环境。在没有关于探索地点和方法的精确指令的情况下,理想的可执行任务的机器人应该能够制作出全面、准确的周围地图,反复决定下一步要去哪里,并确保在这样做的过程中避免碰撞。这个项目将利用机器学习技术来产生和部署新的算法,有可能提高水下机器人探索未知环境的速度和效率,并随着探索机器人获得更多经验而进一步提高性能。具体地说,这个项目将引入机器学习技术来(1)从稀疏和噪声的声纳数据中建立更具描述性的占据图,(2)在潜在的穷尽评估许多候选传感动作中节省计算工作量;以及(3)学习有效的行为来探索复杂的、非结构化的环境,真正需要三维空间推理。实时的3D勘探任务将与其他相关目标协调管理,例如将定位和地图不确定性降至最低,以及与旅行相关的时间和精力支出。一个相关的目标是开发其性能随着经验的改善而提高的机器人系统,动态地在其投资组合中选择最有效的决策工具,并为手头的任务自我参数化最合适的地图表示。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulation-based lidar super-resolution for ground vehicles
- DOI:10.1016/j.robot.2020.103647
- 发表时间:2020-12-01
- 期刊:
- 影响因子:4.3
- 作者:Shan, Tixiao;Wang, Jinkun;Englot, Brendan
- 通讯作者:Englot, Brendan
Virtual Maps for Autonomous Exploration of Cluttered Underwater Environments
用于自主探索杂乱水下环境的虚拟地图
- DOI:10.1109/joe.2022.3153897
- 发表时间:2022
- 期刊:
- 影响因子:4.1
- 作者:Wang, Jinkun;Chen, Fanfei;Huang, Yewei;McConnell, John;Shan, Tixiao;Englot, Brendan
- 通讯作者:Englot, Brendan
Improving obstacle boundary representations in predictive occupancy mapping
改进预测占用映射中的障碍物边界表示
- DOI:10.1016/j.robot.2022.104077
- 发表时间:2022
- 期刊:
- 影响因子:4.3
- 作者:Pearson, Erik;Doherty, Kevin;Englot, Brendan
- 通讯作者:Englot, Brendan
DRACo-SLAM: Distributed Robust Acoustic Communication-efficient SLAM for Imaging Sonar Equipped Underwater Robot Teams
- DOI:10.1109/iros47612.2022.9981822
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:J. McConnell;Yewei Huang;Paul Szenher;Ivana Collado-Gonzalez;Brendan Englot
- 通讯作者:J. McConnell;Yewei Huang;Paul Szenher;Ivana Collado-Gonzalez;Brendan Englot
Virtual Maps for Autonomous Exploration with Pose SLAM
使用姿势 SLAM 进行自主探索的虚拟地图
- DOI:10.1109/iros40897.2019.8967853
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Wang, Jinkun;Shan, Tixiao;Englot, Brendan
- 通讯作者:Englot, Brendan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan Englot其他文献
Chapter 8 Simultaneous Localization and Mapping in Marine Environments
第 8 章 海洋环境中的同步定位与测绘
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Fallon;H. Johannsson;M. Kaess;J. Folkesson;H. McClelland;Brendan Englot;F. Hover;J. Leonard - 通讯作者:
J. Leonard
Sampling-Based Coverage Path Planning for Inspection of Complex Structures
用于复杂结构检查的基于采样的覆盖路径规划
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Brendan Englot;F. Hover - 通讯作者:
F. Hover
Inspection planning for sensor coverage of 3D marine structures
3D 海洋结构传感器覆盖范围的检查计划
- DOI:
10.1109/iros.2010.5648908 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Brendan Englot;F. Hover - 通讯作者:
F. Hover
Planning Complex Inspection Tasks Using Redundant Roadmaps
使用冗余路线图规划复杂的检查任务
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Brendan Englot;F. Hover - 通讯作者:
F. Hover
A Receding Horizon Multi-Objective Planner for Autonomous Surface Vehicles in Urban Waterways
城市水道自主水面车辆的后退多目标规划器
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Tixiao Shan;Wei Wang;Brendan Englot;C. Ratti;D. Rus - 通讯作者:
D. Rus
Brendan Englot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan Englot', 18)}}的其他基金
CAREER: Belief Space Planning and Learning for Uncertainty-Immersed Underwater Robots
职业:不确定性浸入式水下机器人的信念空间规划和学习
- 批准号:
1652064 - 财政年份:2017
- 资助金额:
$ 35.33万 - 项目类别:
Continuing Grant
EAGER: Toward Descriptive Mapping for Underwater Exploration
EAGER:走向水下探索的描述性绘图
- 批准号:
1551391 - 财政年份:2015
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
NRI: FND: Coordinating and Incorporating Trust in Teams of Humans and Robots with Multi-Robot Reinforcement Learning
NRI:FND:通过多机器人强化学习协调和整合人类和机器人团队的信任
- 批准号:
2024790 - 财政年份:2020
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant
NRI: FND: A Formal Methods Approach to Safe, Composable, and Distributed Reinforcement Learning for co-Robots
NRI:FND:协作机器人安全、可组合和分布式强化学习的形式化方法
- 批准号:
2024606 - 财政年份:2020
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant
NRI: FND: The Robotic Rehab Gym: Specialized co-robot trainers working with multiple human trainees for optimal learning outcomes
NRI:FND:机器人康复健身房:专业协作机器人培训师与多名人类受训者合作以获得最佳学习成果
- 批准号:
2024813 - 财政年份:2020
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant
NRI: FND: Intelligent Co-robots for Complex Welding Manufacturing through Learning and Generalization of Welders Capabilities
NRI:FND:通过学习和推广焊工能力实现复杂焊接制造的智能协作机器人
- 批准号:
2024614 - 财政年份:2020
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant
Collaborative Research: NRI: FND: Learning Graph Neural Networks for Multi-Object Manipulation
合作研究:NRI:FND:学习多对象操作的图神经网络
- 批准号:
2024778 - 财政年份:2020
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Navigation, Learning, and Collaboration in Fluids with Application to Ubiquitous Marine Co-Robots
NRI:FND:流体中的协作导航、学习和协作及其在无处不在的海洋协作机器人中的应用
- 批准号:
2024928 - 财政年份:2020
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant
NRI: FND: Semi-Supervised Deep Learning for Domain Adaptation in Robotic Language Acquisition
NRI:FND:用于机器人语言习得领域适应的半监督深度学习
- 批准号:
2024878 - 财政年份:2020
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant
NRI: FND: Robust Learning of Sequential Motion from Human Demonstrations to Enable Robot-Guided Exercise Training
NRI:FND:从人体演示中稳健地学习顺序运动,以实现机器人引导的运动训练
- 批准号:
1830597 - 财政年份:2019
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Learning from Stories: Practical Value Alignment and Taskability for Autonomous Systems
S
- 批准号:
1849231 - 财政年份:2019
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant
S&AS: FND: Uncertainty-Aware Safe Deep Reinforcement Learning
S
- 批准号:
1849154 - 财政年份:2019
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant