CAREER: Perceptually Guided Hand Motion Synthesis

职业:感知引导的手部动作合成

基本信息

  • 批准号:
    1652210
  • 负责人:
  • 金额:
    $ 49.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

This research will explore ways to automatically synthesize hand and finger animation for virtual characters that exploit human perception as an inherent part of the algorithm. In recent years, character animation has taken tremendous strides towards realistic virtual agents, with increasingly better solutions for body motion capture, for achieving highly realistic facial animation, and for simulating cloth and hair. With these key components in place, the need to create plausible hand and finger motions has become important because these play a crucial role in communicating information while also allowing us to conduct basic tasks and to handle complex tools. But the differences in size and complexity of hand motions compared to body motions make it difficult to capture or synthesize both at the same time. Therefore, finger motions are typically still animated manually, which is a cumbersome process. Taking advantage of perceptual findings could enable the creation of new algorithms to accomplish this task (e.g., by suggesting new methods and by aiding in algorithm parameter adjustment). The ultimate goal of this research is to merge character animation and motion perception into an interdisciplinary field that yields new insights and approaches to finger and hand movement synthesis as well as a better understanding of how we communicate. If successful, the work will significantly advance the way we design algorithms to bring virtual characters to life, and project outcomes will have broad impact not only in computer graphics but also in applications such as virtual reality, robotics and prosthetics. The project includes integrated educational and outreach activities for K-12, undergraduate, and graduate students. This research will initiate a fundamental transformation of how we design algorithms for character animation by coupling perceptual experiments with computer animation algorithm development for hand and finger motion synthesis. Several approaches and devices have been suggested for hand and finger animation, each with their own drawbacks. Some of these approaches show promise and could be improved or combined, but the options are many and a more systematic approach is required. This work will focus on two applications: data-driven hand motion synthesis for virtual characters, and hand motions for interaction and communication in virtual reality. The plan is to develop an algorithm for hand motion synthesis based on segment and pose matching, on perceptual insights on the relevance of finger poses and dynamics, and on the perception of collisions, to support real-time interaction in virtual reality.
本研究将探索利用人类感知作为算法固有部分的虚拟人物自动合成手和手指动画的方法。近年来,角色动画在逼真的虚拟代理方面取得了巨大的进步,在身体动作捕捉、实现高度逼真的面部动画以及模拟布料和头发方面有了越来越好的解决方案。有了这些关键部件,创造合理的手部和手指动作就变得很重要,因为这些动作在信息交流中起着至关重要的作用,同时也使我们能够执行基本任务和处理复杂的工具。但是,与身体动作相比,手部动作的大小和复杂性的差异使得同时捕捉或合成两者变得困难。因此,手指运动通常仍然是手动动画,这是一个繁琐的过程。利用感知发现可以创建新的算法来完成这项任务(例如,通过提出新的方法和帮助算法参数调整)。这项研究的最终目标是将角色动画和运动感知合并到一个跨学科领域,产生新的见解和方法来手指和手的运动合成,以及更好地理解我们如何沟通。如果成功,这项工作将大大推进我们设计算法的方式,使虚拟人物栩栩如生,项目成果将不仅在计算机图形学领域,而且在虚拟现实、机器人和假肢等应用领域产生广泛影响。该项目包括针对K-12、本科生和研究生的综合教育和推广活动。本研究将通过将感知实验与手和手指运动合成的计算机动画算法开发相结合,启动我们如何设计角色动画算法的根本性转变。对于手和手指动画,已经提出了几种方法和设备,每种方法和设备都有自己的缺点。其中一些方法显示出希望,可以加以改进或结合,但可供选择的方法很多,需要一种更系统的方法。这项工作将集中在两个应用上:数据驱动的虚拟人物手部动作合成,以及虚拟现实中用于交互和交流的手部动作。该计划是开发一种基于片段和姿势匹配的手部运动合成算法,基于对手指姿势和动态相关性的感知洞察,以及对碰撞的感知,以支持虚拟现实中的实时交互。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Performance Is Not Everything: Audio Feedback Preferred Over Visual Feedback for Grasping Task in Virtual Reality
性能并不代表一切:在虚拟现实中的抓取任务中,音频反馈优于视觉反馈
  • DOI:
    10.1145/3424636.3426897
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Canales, Ryan;Jörg, Sophie
  • 通讯作者:
    Jörg, Sophie
Virtual Grasping Feedback and Virtual Hand Ownership
  • DOI:
    10.1145/3343036.3343132
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan Canales;Aline Normoyle;Yu Sun;Yuting Ye;Massimiliano Di Luca;S. Jörg
  • 通讯作者:
    Ryan Canales;Aline Normoyle;Yu Sun;Yuting Ye;Massimiliano Di Luca;S. Jörg
How Important are Detailed Hand Motions for Communication for a Virtual Character Through the Lens of Charades?
通过字谜镜头,详细的手势对于虚拟角色的交流有多重要?
  • DOI:
    10.1145/3578575
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Adkins, Alex;Normoyle, Aline;Lin, Lorraine;Sun, Yu;Ye, Yuting;Di Luca, Massimiliano;Jörg, Sophie
  • 通讯作者:
    Jörg, Sophie
Evaluating Grasping Visualizations and Control Modes in a VR Game
Do We Measure What We Perceive? Comparison of Perceptual and Computed Differences between Hand Animations
  • DOI:
    10.1145/3532719.3543233
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Justice;Alexndra Adkins;Tommy Dong;S. Jörg
  • 通讯作者:
    Jacob Justice;Alexndra Adkins;Tommy Dong;S. Jörg
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sophie Joerg其他文献

Sophie Joerg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sophie Joerg', 18)}}的其他基金

CHS: Small: Looking Across the Uncanny Valley: Procedural and Data-Driven Methods for Gaze Modeling
CHS:小:纵观恐怖谷:注视建模的程序和数据驱动方法
  • 批准号:
    1423189
  • 财政年份:
    2014
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: HCC: Developing Perceptually-Driven Tools for Estimating Visualization Effectiveness
职业:HCC:开发用于估计可视化效果的感知驱动工具
  • 批准号:
    2320920
  • 财政年份:
    2022
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Continuing Grant
Perceptually Optimized Video and Graphics on Mobile Devices
移动设备上经过感知优化的视频和图形
  • 批准号:
    545170-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Alliance Grants
Perceptually Optimized Video and Graphics on Mobile Devices
移动设备上经过感知优化的视频和图形
  • 批准号:
    545170-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Alliance Grants
CAREER: HCC: Developing Perceptually-Driven Tools for Estimating Visualization Effectiveness
职业:HCC:开发用于估计可视化效果的感知驱动工具
  • 批准号:
    2046725
  • 财政年份:
    2021
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Continuing Grant
Capturing child attention: Are perceptually rich stimuli the best way to aid number learning?
吸引孩子的注意力:丰富的感知刺激是帮助数字学习的最佳方式吗?
  • 批准号:
    2411605
  • 财政年份:
    2020
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Studentship
Perceptually Optimized Video and Graphics on Mobile Devices
移动设备上经过感知优化的视频和图形
  • 批准号:
    545170-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Alliance Grants
Psychoacoustic evaluations of timbral boundaries and a computational model of perceptually distinct sound entities.
音色边界的心理声学评估和感知不同声音实体的计算模型。
  • 批准号:
    489788-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Perceptually Motivated Advanced Bandwidth Extension Method in Multichannel Blind Source Separation
多通道盲源分离中感知驱动的高级带宽扩展方法
  • 批准号:
    489818-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Psychoacoustic evaluations of timbral boundaries and a computational model of perceptually distinct sound entities.
音色边界的心理声学评估和感知不同声音实体的计算模型。
  • 批准号:
    489788-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Perceptually Motivated Advanced Bandwidth Extension Method in Multichannel Blind Source Separation
多通道盲源分离中感知驱动的高级带宽扩展方法
  • 批准号:
    489818-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了