CAREER: Research and Education: Number Theory, Geometry and Cryptography
职业:研究和教育:数论、几何和密码学
基本信息
- 批准号:1652238
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project advances the understanding of number theory, geometry, and cryptography. Number theory and geometry are among the oldest and most central topics in mathematics, while their application to cryptography underlies modern cybersecurity. The project focuses on the relationships between number-theoretic information and geometric structures such as elliptic curves, circle packings, and lattices. A primary cryptographic focus of the project is to study the security of proposals for post-quantum cryptography, that is, cryptographic protocols that can secure information against an adversary with a quantum computer. In addition, the project will create a Mathematics Lab at the University of Colorado, Boulder, whose aim is to involve a diverse undergraduate population in creative, experimental, computation- and visualization-based mathematics research experiences, and to disseminate the products of this research through outreach and community involvement. Students involved in the Mathematics Lab will go on to act as ambassadors of mathematics in all fields: teaching, industry, medicine, etc. The project also supports the mentoring of women in mathematics and the furtherance of cross-disciplinary collaboration between mathematicians and computer scientists.The project involves three branches. In the first, the PI will develop new and known connections between the orbits of Bianchi groups, which describe certain geometric aspects of imaginary quadratic fields, and elliptic curves with complex multiplication, thin groups, class groups, and abelian sandpiles. In the second, the PI will extend the theory of elliptic nets to abelian varieties and investigate applications (including to pairing-based cryptography). The third topic is the study of the security of the Ring-Learning-with-Errors problem as a basis for post-quantum cryptography. This problem is an application of the geometric structure of lattices appearing in number fields. The PI will investigate the extent of known and potential new attacks based on this number theoretical structure and compare these with known security parameters and suggested implementations. The Mathematics Lab will consist of teams of undergraduates led by faculty and graduate students, focusing on the exploration of an open problem in mathematics and an outreach application. Outreach will include mathematical visualizations, art, software, and interactive workshops for all ages.
这个项目促进了对数论,几何和密码学的理解。 数论和几何是数学中最古老和最核心的主题之一,而它们在密码学中的应用则是现代网络安全的基础。 该项目的重点是数论信息和几何结构之间的关系,如椭圆曲线,圆填充和格子。 该项目的主要加密重点是研究后量子加密提案的安全性,即可以通过量子计算机保护信息免受对手攻击的加密协议。 此外,该项目将在博尔德的科罗拉多大学创建一个数学实验室,其目的是让不同的本科生参与创造性的、实验性的、基于计算和可视化的数学研究经验,并通过外联和社区参与传播这项研究的产品。 参与数学实验室的学生将继续在各个领域担任数学大使:教学,工业,医学等。该项目还支持指导数学领域的女性,并促进数学家和计算机科学家之间的跨学科合作。该项目涉及三个分支。 首先,PI将开发新的和已知的比安奇组,它描述了某些几何方面的虚二次场,椭圆曲线与复杂的乘法,薄组,类组和阿贝尔沙堆的轨道之间的连接。 在第二部分中,PI将椭圆网理论扩展到阿贝尔簇并研究应用(包括基于配对的密码学)。 第三个主题是作为后量子密码学基础的带错误环学习问题的安全性研究。 这个问题是数域中出现的格的几何结构的一个应用。 PI将根据该数论结构调查已知和潜在的新攻击的程度,并将其与已知的安全参数和建议的实现进行比较。 数学实验室将由教师和研究生领导的本科生团队组成,专注于探索数学中的开放问题和推广应用。 外联将包括数学可视化,艺术,软件和所有年龄段的互动研讨会。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Counting intersection numbers of closed geodesics on Shimura curves
计算 Shimura 曲线上闭合测地线的交点数
- DOI:10.1007/s40993-023-00428-y
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Rickards, James
- 通讯作者:Rickards, James
Improved computation of fundamental domains for arithmetic Fuchsian groups
改进算术 Fuchsian 群基本域的计算
- DOI:10.1090/mcom/3777
- 发表时间:2022
- 期刊:
- 影响因子:2
- 作者:Rickards, James
- 通讯作者:Rickards, James
Algebraic Number Starscapes
代数数星空
- DOI:10.1080/10586458.2022.2102094
- 发表时间:2022
- 期刊:
- 影响因子:0.5
- 作者:Harriss, Edmund;Stange, Katherine E.;Trettel, Steve
- 通讯作者:Trettel, Steve
Index divisibility in dynamical sequences and cyclic orbits modulo p
动态序列和循环轨道模 p 中的指数整除性
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0.6
- 作者:Chen, Annie;Gassert, Alden T.;Stange, Katherine E.
- 通讯作者:Stange, Katherine E.
Reductions between short vector problems and simultaneous approximation
短向量问题和联立逼近之间的约简
- DOI:10.2140/obs.2020.4.335
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Martin, Daniel E.
- 通讯作者:Martin, Daniel E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Stange其他文献
Katherine Stange的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine Stange', 18)}}的其他基金
Arithmetic of Thin Groups and Isogeny-Based Cryptography
稀疏群算法和基于同源的密码学
- 批准号:
2401580 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: Front Range Number Theory Day
合作研究:前沿数论日
- 批准号:
1936672 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
EAGER: Number Theory and Cryptograpghy
EAGER:数论和密码学
- 批准号:
1643552 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
- 批准号:
2338178 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Conference: Early Career Development (CAREER) Program Workshop for STEM Education Research at Minority-Serving Institutions
会议:少数族裔服务机构 STEM 教育研究早期职业发展 (CAREER) 计划研讨会
- 批准号:
2400690 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: An Integrated Trustworthy AI Research and Education Framework for Modeling Human Behavior in Climate Disasters
职业生涯:用于模拟气候灾害中人类行为的综合可信人工智能研究和教育框架
- 批准号:
2338959 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
REU Site: A Summer Experience for Undergraduates Integrating Research, Education, and Career Development in an Interdisciplinary Environment
REU 网站:本科生在跨学科环境中整合研究、教育和职业发展的暑期体验
- 批准号:
2349329 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
"CAREER:" Shark Survivor! Interdisciplinary approaches to modern and paleo- ecology in research and education
“职业:”鲨鱼幸存者!
- 批准号:
2239981 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Autonomous, Rapid Self-Healing and Ultra-Stretchable Electronic Polymer Research & Education for Outreach and Student Success in STEM
职业:自主、快速自愈和超可拉伸电子聚合物研究
- 批准号:
2305282 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: An Integrated Geophysical Approach to Research and Education to Solve the Tectonic Puzzle of the Northern Atlantic
职业:解决北大西洋构造难题的综合地球物理研究和教育方法
- 批准号:
2238340 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Peptidic Natural Products in Research and Education
职业:肽类天然产物的研究和教育
- 批准号:
2238650 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: Education Landscape for Quantum Information Science and Engineering: Guiding Education Innovation to Support Quantum Career Paths
合作研究:量子信息科学与工程的教育格局:指导教育创新以支持量子职业道路
- 批准号:
2333073 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Education Landscape for Quantum Information Science and Engineering: Guiding Education Innovation to Support Quantum Career Paths
合作研究:量子信息科学与工程的教育格局:指导教育创新以支持量子职业道路
- 批准号:
2333074 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant