CAREER:An all-optical plasmonic device to control and couple quantum dots for optical and quantum information processing
职业:用于控制和耦合量子点以进行光学和量子信息处理的全光学等离子体装置
基本信息
- 批准号:1652720
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: CAREER: Ultrafast traffic control of photons on the nanoscale for optical information processing Abstract:Nontechnical description: Modern day computational devices, from smartphones to supercomputers, all rely on electrons to carry and process information. As the footprint of the basic circuits on a microchip is shrinking to nanometers in size, close proximity of these components can cause an information "traffic jam" due to the interactions between electrons. In order to overcome this limitation, current research efforts are exploring the idea of replacing electrons with photons as the principal carriers of information since they do not interact directly with each other. A photonic device is expected to be superior in terms of speed, bandwidth, and energy efficiency. However, this lack of direct interaction can be a double-edged sword: how can a photon be controlled by another photon in an all-optical device? To answer this conundrum, this proposed project will exploit the electromagnetic confinement and enhancement power of metallic nanostructures to not only guide photons on a nanoscale footprint below their diffraction limit, but to also control, on the timescale of trillionths of a second, how photons are emitted from a nanoscale light source called the quantum dot and where they will go. The key idea is not to rely on the direct photon interaction but rather to use the optically excited metallic nanostructures to strongly modify the quantum dot, which subsequently determines the properties and directions of the produced photon. The successful implementation of these techniques lays the path to ultrafast optical switches or transistors that can lead to a paradigm shift in information processing technology.Technical description: This five-year career-development plan is a comprehensive research, education, and outreach program. The research plan aims to develop new ways of controlling the light-matter interactions on the nanoscale in a hybrid system of quantum dots and plasmonic structures. The objectives of the proposed research project are two folds. The first explores a new approach for manipulating and tuning the internal energy states of a single quantum dot through the optical modification of its local dielectric environment using a plasmonic gate. This indirect method exploits the strong near-field effect of the plasmonic structure as a mean of control while avoiding significant changes to the intrinsic properties of the quantum dot due to ohmic loss. The second investigates the coherent and incoherent couplings between two spatially separated quantum dots via a plasmonic waveguide and establish entanglement between the linked dots through a dissipative coupling channel. This coupled design protects stored information in the presence of ohmic loss while maintaining the ultrafast optical readout and broadband guided transfer enabled by a plasmonic waveguide. All of these capabilities are highly desirable in a wide range of applications from ultrafast optical switches to quantum information processing. The educational plan outlines a deep commitment to improve STEM education at the K-12 and university levels. The objectives of the proposed educational plan aim to develop an integrated approach that combines academic learning with extracurricular guidance to help students gain the scientific, analytical, and stress management skills necessary in becoming an independent scientist. This approach is carried out through the revitalization of the local Society of Physics Student chapter. In addition, outreach activities are structured to promote the field of nanotechnology and optics to young women in K-12 schools through visual and interactive presentations and engage middle and high school girls in STEM. Lastly, a new graduate quantum optics course is developed to address the knowledge gap in the current physics curriculum.
职务名称:职业:摘要:非技术性描述:现代计算设备,从智能手机到超级计算机,都依赖于电子来携带和处理信息。随着微芯片上基本电路的尺寸缩小到纳米级,由于电子之间的相互作用,这些组件的接近可能会导致信息“交通堵塞”。为了克服这一限制,目前的研究工作正在探索用光子取代电子作为信息的主要载体的想法,因为它们彼此不直接相互作用。期望光子器件在速度、带宽和能量效率方面是上级的。然而,这种缺乏直接相互作用可能是一把双刃剑:在全光学设备中,一个光子如何被另一个光子控制?为了回答这个难题,这个拟议中的项目将利用金属纳米结构的电磁约束和增强能力,不仅可以在低于衍射极限的纳米尺度上引导光子,而且还可以在万亿分之一秒的时间尺度上控制光子如何从称为量子点的纳米尺度光源发射以及它们将去哪里。其关键思想是不依赖于直接的光子相互作用,而是使用光激发的金属纳米结构来强烈地修饰量子点,这随后决定了所产生的光子的性质和方向。这些技术的成功实施奠定了超快光开关或晶体管,可以导致信息处理技术的范式转变的道路。技术描述:这个五年的职业发展计划是一个全面的研究,教育和推广计划。该研究计划旨在开发新的方法,在量子点和等离子体结构的混合系统中控制纳米尺度上的光-物质相互作用。拟议研究项目的目标有两个方面。第一个探索了一种新的方法,通过使用等离子体激元门的局部介电环境的光学修改,操纵和调谐单个量子点的内部能量状态。这种间接方法利用了等离子体结构的强近场效应作为控制手段,同时避免了由于欧姆损耗而导致的量子点的本征性质的显著变化。第二部分研究了两个空间分离的量子点之间通过等离子体波导的相干和非相干耦合,并通过耗散耦合通道建立了量子点之间的纠缠。这种耦合设计在存在欧姆损耗的情况下保护存储的信息,同时保持由等离子体激元波导实现的超快光学读出和宽带引导转移。所有这些能力在从超快光开关到量子信息处理的广泛应用中都是非常理想的。该教育计划概述了改善K-12和大学层面STEM教育的坚定承诺。拟议教育计划的目标是制定一种综合方法,将学术学习与课外指导相结合,帮助学生获得成为独立科学家所需的科学、分析和压力管理技能。这种方法是通过振兴当地物理学会学生分会来进行的。此外,还组织了外联活动,通过视觉和互动演示向K-12学校的年轻女性推广纳米技术和光学领域,并让初中和高中女生参与STEM。最后,一个新的研究生量子光学课程的开发,以解决目前的物理课程的知识差距。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localized All‐Optical Control of Single Semiconductor Quantum Dots through Plasmon Polariton‐Induced Screening
通过等离激元极化子诱导筛选对单半导体量子点进行局部全光学控制
- DOI:10.1002/adom.201800345
- 发表时间:2018
- 期刊:
- 影响因子:9
- 作者:Seaton, Matt;Krasnok, Alex;Bracker, Allan S.;Alù, Andrea;Wu, Yanwen
- 通讯作者:Wu, Yanwen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanwen Wu其他文献
Strain-induced bandgap engineering in CsGeX3 (X = I, Br or Cl) perovskites: insights from first-principles calculations
CsGeX3(X = I、Br 或 Cl)钙钛矿中的应变诱导带隙工程:第一性原理计算的见解
- DOI:
10.1039/d1cp05787a - 发表时间:
2022 - 期刊:
- 影响因子:3.3
- 作者:
Guangbiao Xiang;Yanwen Wu;Man Zhang;Jiancai Leng;Chen Cheng;Hong Ma - 通讯作者:
Hong Ma
Human exposure to micro(nano)plastics: Health risks and analysis methods
人类对微(纳)塑料的暴露:健康风险与分析方法
- DOI:
10.1016/j.trac.2024.117835 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:12.000
- 作者:
Guoyou Chen;Xiaolei Li;Zhibin Wang;Minghui Li;Wenyi Wang;Ruize Lu;Shihe Wang;Qi Li;Zunbo Hu;Yanwen Wu;Zhonghua Li;Peng Wang;Yonggang Cao - 通讯作者:
Yonggang Cao
Insights into the influence of rutin and amylose on the structure of maize starch-lauric acid-rutin complex
芦丁和直链淀粉对玉米淀粉 - 月桂酸 - 芦丁复合物结构的影响的见解
- DOI:
10.1016/j.foodchem.2025.144708 - 发表时间:
2025-09-30 - 期刊:
- 影响因子:9.800
- 作者:
Jing Cheng;Zixuan Wang;Mengyu Liu;Yanwen Wu;Jie Ouyang - 通讯作者:
Jie Ouyang
Transient nonlinear optical spectroscopy studies involving biexciton coherence in single quantum dots
涉及单量子点双激子相干性的瞬态非线性光谱研究
- DOI:
10.1103/physrevb.73.153304 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Xiaoqin Li;Yanwen Wu;Xiaodong Xu;D. Steel;D. Gammon - 通讯作者:
D. Gammon
Affective Modeling and Recognition of Learning Emotion: Application to E-learning
学习情绪的情感建模和识别:在电子学习中的应用
- DOI:
10.4304/jsw.4.8.859-866 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Yanwen Wu;Tingting Wang;Xiaonian Chu - 通讯作者:
Xiaonian Chu
Yanwen Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanwen Wu', 18)}}的其他基金
MRI: Acquisition of the NanoFrazor - a unique AFM-based nanolithography tool to support multidisciplinary research and promote nanoscience in South Carolina and beyond
MRI:收购 NanoFrazor - 一种独特的基于 AFM 的纳米光刻工具,用于支持多学科研究并促进南卡罗来纳州及其他地区的纳米科学
- 批准号:
1920117 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于太赫兹光谱近场成像技术的应力场测量方法
- 批准号:11572217
- 批准年份:2015
- 资助金额:120.0 万元
- 项目类别:面上项目
阵风场中非定常大气湍流对沙粒跃移运动的影响
- 批准号:11102153
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于两级表面等离子共振增强结构的高灵敏度拉曼散射成像物理机制及制作工艺研究
- 批准号:61007018
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
堆栈型全光缓存研究
- 批准号:60977003
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
基于回廊耳语模式的非圆对称光学微谐振腔的发光特性及传感性能研究
- 批准号:10574032
- 批准年份:2005
- 资助金额:33.0 万元
- 项目类别:面上项目
基于软光刻法的光学互连耦合结构研究
- 批准号:60477019
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
新型液晶可变光衰减器的研制
- 批准号:60377019
- 批准年份:2003
- 资助金额:25.0 万元
- 项目类别:面上项目
利用混合遗传算法从多方位光流场恢复3D运动与结构的研究
- 批准号:60305003
- 批准年份:2003
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
电极/溶液界面上分子取向电位调控的准确测量
- 批准号:20373076
- 批准年份:2003
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
Sorting and Imaging Micro- and Nano-Particle Pollutions in Aqueous Systems Using a Chiral Plasmonic Optical Tweezers
使用手性等离子体光镊对水系统中的微米和纳米颗粒污染物进行分类和成像
- 批准号:
23K04618 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sub-nanometer Optical Imaging and Self-Assembly on Plasmonic Metals
等离子金属的亚纳米光学成像和自组装
- 批准号:
RGPIN-2022-03088 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Rapid Viral Diagnostic Test by Digital Plasmonic Nanobubbles
利用数字等离子体纳米气泡进行快速病毒诊断测试
- 批准号:
10547200 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Rapid Viral Diagnostic Test by Digital Plasmonic Nanobubbles
利用数字等离子体纳米气泡进行快速病毒诊断测试
- 批准号:
10665073 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
QTPlasmonics - Next generation of plasmonic integrated label free biosensing including optical, electrical and thermal active controls and readouts
QTPlasmonics - 下一代等离子体集成无标记生物传感,包括光学、电学和热学主动控制和读数
- 批准号:
RGPIN-2016-05154 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
High-functionality optical phased array by plasmonic antenna
采用等离子体天线的高性能光学相控阵
- 批准号:
21K14221 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Plasmonic Single-Photon Source for Optical Quantum Computation
用于光量子计算的等离子体单光子源
- 批准号:
564176-2021 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
University Undergraduate Student Research Awards
QTPlasmonics - Next generation of plasmonic integrated label free biosensing including optical, electrical and thermal active controls and readouts
QTPlasmonics - 下一代等离子体集成无标记生物传感,包括光学、电学和热学主动控制和读数
- 批准号:
RGPIN-2016-05154 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Flat Singular Optics: Generation and Detection of Optical Vortex Beams with Plasmonic Metasurfaces in Linear and Nonlinear Regimes
职业:平面奇异光学:在线性和非线性体系中使用等离激元超表面生成和检测光学涡旋光束
- 批准号:
2204163 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Plasmonic and Nonlinear Optical Properties of Gold Metamaterials
金超材料的等离子体和非线性光学特性
- 批准号:
548072-2020 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Postgraduate Scholarships - Doctoral