Sub-nanometer Optical Imaging and Self-Assembly on Plasmonic Metals

等离子金属的亚纳米光学成像和自组装

基本信息

  • 批准号:
    RGPIN-2022-03088
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

My group's long-term goal is to use the capabilities of scanning probes, such as the two new state-of-the-art scanning probe microscopes described in this proposal, to address critical research questions in nanophotonics and surface chemistry/physics. In this proposal, two research questions/themes are identified and described. Theme 1: Towards atomic optical imaging with quantum optical plasmonics By combining scanning tunnelling microscopy with optical spectroscopy, it has been demonstrated that photoluminescence and also Raman images of single molecules can be acquired with sub--nanometer spatial resolution. These results dramatically illustrate how plasmonic materials can enhance optical processes and they also represent an important step towards atomic optical resolution. With theorists at Queen's, our goal is to develop and test a quantum mechanical model of the optical enhancement in photoluminescence and tip---enhanced Raman imaging that includes the opto-mechanical coupling between the vibrating molecules and the plasmon resonance. We will perform optical imaging of model systems, including molecules and atomically precise nano-clusters, using a cryogenic nano--optical microscope. Atomically sharp tips will be selected using non-contact atomic force microscopy with a qPlus sensor. The impact will be fundamental insights into plasmon enhancement that could potentially have applications for nanoscale optical devices, an important technology market in North America. Theme 2: Self--assembly of N--heterocylic carbenes on plasmonic metals Although the self--assembly of organic molecules on metallic surfaces is one of the most powerful methods for patterning at the nanometer scale, the thermal and oxidative instability of commonly used thiol-based self-assembled monolayers are significant impediments to their widespread commercial use in plasmonic optical devices. With collaborators in Chemistry, we have demonstrated that N--heterocyclic carbenes (NHCs) represent a viable alternative to thiols. Our goal is to optimize the stability of these new overlayer systems by systematically modifying the structure of the NHCs and concurrently developing a molecular--level understanding of their surface chemistry, self--assembly methods and protocols. The impact will be an optimized next generation functionalizing agent for metal surfaces based on NHCs that can be used as a surface modifier with applications in molecular electronics, microcontact printing, biosensing and surface protection. The insights gained through the study of NHC self-assembly on surfaces will also inform the synthesis of NHC-stabilized metal nanoclusters that are used in medicine and catalysis. This proposal will provide training for a total of 18 students at the following levels: 2 PhD, 6 MSc, 5 undergraduate summer students, and 5 final year honours theses.
我的团队的长期目标是利用扫描探针的能力,例如本提案中描述的两个新的最先进的扫描探针显微镜,来解决纳米光子学和表面化学/物理方面的关键研究问题。在本提案中,确定并描述了两个研究问题/主题。通过将扫描隧道显微镜与光谱学相结合,证明了单分子的光致发光和拉曼图像可以在亚纳米级的空间分辨率下获得。这些结果戏剧性地说明了等离子体材料如何增强光学过程,它们也代表了原子光学分辨率的重要一步。与皇后大学的理论学家一起,我们的目标是开发和测试光致发光和尖端增强拉曼成像的光学增强的量子力学模型,包括振动分子和等离子体共振之间的光-机械耦合。我们将使用低温纳米光学显微镜对模型系统进行光学成像,包括分子和原子精确的纳米团簇。使用带有qPlus传感器的非接触式原子力显微镜来选择原子尖。这将对等离子体增强产生根本性的影响,并有可能应用于纳米级光学器件,这是北美一个重要的技术市场。虽然有机分子在金属表面的自组装是纳米尺度上图像化最有效的方法之一,但常用的硫醇基自组装单层的热不稳定性和氧化不稳定性是其在等离子光学器件中广泛商业应用的重大障碍。在化学方面,我们已经证明了N-杂环碳烯(NHCs)是硫醇的可行替代品。我们的目标是通过系统地修改NHCs的结构,同时对其表面化学、自组装方法和协议进行分子水平的理解,来优化这些新覆盖系统的稳定性。影响将是基于NHCs的优化的下一代金属表面功能化剂,可作为表面改性剂,应用于分子电子学,微接触印刷,生物传感和表面保护。通过研究NHC在表面上的自组装获得的见解也将为合成用于医学和催化的NHC稳定金属纳米团簇提供信息。该计划将为18名以下级别的学生提供培训:2名博士,6名硕士,5名本科生暑期学生和5篇最后一年的荣誉论文。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

McLean, Alastair其他文献

McLean, Alastair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('McLean, Alastair', 18)}}的其他基金

Microscopy of Functional Molecules
功能分子的显微镜检查
  • 批准号:
    RGPIN-2015-06085
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Microscopy of Functional Molecules
功能分子的显微镜检查
  • 批准号:
    RGPIN-2015-06085
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Microscopy of Functional Molecules
功能分子的显微镜检查
  • 批准号:
    RGPIN-2015-06085
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Microscopy of Functional Molecules
功能分子的显微镜检查
  • 批准号:
    RGPIN-2015-06085
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured surfaces: growth processes and patterns, new electronic and optical materials
纳米结构表面:生长过程和图案、新型电子和光学材料
  • 批准号:
    46683-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured surfaces: growth processes and patterns, new electronic and optical materials
纳米结构表面:生长过程和图案、新型电子和光学材料
  • 批准号:
    46683-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured surfaces: growth processes and patterns, new electronic and optical materials
纳米结构表面:生长过程和图案、新型电子和光学材料
  • 批准号:
    46683-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured surfaces: growth processes and patterns, new electronic and optical materials
纳米结构表面:生长过程和图案、新型电子和光学材料
  • 批准号:
    46683-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured surfaces: growth processes and patterns, new electronic and optical materials
纳米结构表面:生长过程和图案、新型电子和光学材料
  • 批准号:
    46683-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Apparatus for studying the structure and evolution of atomically-ordered domain boundaries, kinks and vertexes
用于研究原子有序域边界、扭结和顶点的结构和演化的装置
  • 批准号:
    389553-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)

相似国自然基金

钙磷基纳米粒子的分布降解及其成骨系细胞响应机制研究
  • 批准号:
    81171682
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
纳米羟基磷灰石的蛋白缓释及其对成骨细胞影响机制研究
  • 批准号:
    30640041
  • 批准年份:
    2006
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

High spatiotemporal optical imaging to study dynamics of 3D cell motion and behavior in living organisms
高时空光学成像用于研究活体生物体中 3D 细胞运动和行为的动力学
  • 批准号:
    10715637
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Reconstruction of three-dimensional organ of Corti micromechanical motion patterns via optical coherence tomography
光学相干断层扫描重建三维Corti器官微机械运动模式
  • 批准号:
    10533408
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Simultaneous single-molecule optical and electrical measurements of ion channel ligand binding and pore gating
离子通道配体结合和孔门控的同时单分子光学和电学测量
  • 批准号:
    10575611
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Long-wavelength 1.7-micron optical coherence tomography for otologic imaging and hearing research
用于耳科成像和听力研究的长波长 1.7 微米光学相干断层扫描
  • 批准号:
    10664863
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Two-photon all-optical electrophysiology in behaving mice
行为小鼠的双光子全光电生理学
  • 批准号:
    10401180
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Expansion Optical Coherence Microscopy (ExOCM)
扩展光学相干显微镜 (ExOCM)
  • 批准号:
    10668523
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Expansion Optical Coherence Microscopy (ExOCM)
扩展光学相干显微镜 (ExOCM)
  • 批准号:
    10530971
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Ultrahigh-Resolution Quantitative Optical Coherence Elastography of the Tumor Microenvironment In Vivo
体内肿瘤微环境的超高分辨率定量光学相干弹性成像
  • 批准号:
    10225877
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
Optoretinography: All-optical measures of functional activity in the human retina
视网膜检光术:人类视网膜功能活动的全光学测量
  • 批准号:
    10295296
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
Optical imaging of neural activity based on the Lorentz effect
基于洛伦兹效应的神经活动光学成像
  • 批准号:
    9977534
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了