CAREER: Large-scale biological network integration with applications to automated function annotation
职业:大规模生物网络集成与自动化功能注释的应用
基本信息
- 批准号:1652815
- 负责人:
- 金额:$ 78.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to develop new methods for integrating large amounts of high resolution data arising from different types of molecules and measurement methods; the goal is to ascertain how the molecules interact over time to carry out essential biological functions. Biological functions are carried out through the myriad interactions of biological molecules, such as when proteins bind to other proteins to modulate their activity or to nucleic acids to regulate genes. DNA sequencing has led to an explosive growth in data reporting genomic sequences and their variations, and gene expression through transcript profiling; the data streams from high-throughput technologies for protein and metabolite profiling are quickly catching up. This has led to ever-expanding repositories that archive, organize and share the resulting data: by also connecting experimental conditions to the molecular profiles, researchers come to understand which molecular interactions occur and, from these, deduce many of the biological functions in living cells. Extraction of meaningful biological insights from these data sets is challenging in two ways: the data sets are very large so they require computational methods for basic handling, and each type of data differs from the others in many ways (type of noise, source of error, completeness, etc.) so they may require different statistical modeling to standardize them correctly prior to merging them. Carried out correctly, the resulting high-dimensional data sets are suitable for a variety of predictive analytics that reveal functional modules in the molecular interactomes. Results from this project will be made available through webservers and open source software. The integrated research and educational activities include interdisciplinary bioinformatics curriculum development, outreach to high school students and research opportunities for students in underrepresented groups.Comprehensively understanding various functional aspects of a gene or a protein, such as involvement in a particular biological process, physical/genetic interactions, or disease association, is critical for both biology and translational medicine research. Since exhaustively characterizing genes or proteins through biological experiments is often intractable, systems-level integration of knowledge and computational hypothesis generation have garnered great interest in the field as an effective way to guide experiments. In this project, we will develop a novel computational framework for data integration and dimensionality reduction of heterogeneous network and functional genomic data to obtain informative data representations in a low-dimensional vector space. To utilize both molecular networks and evolutionary information, we will apply the proposed dimensionality reduction techniques to effectively integrate sequence data and network data across multiple species for predicting gene function. Our approaches will enable large-scale, integrated, cross-species, genome-scale gene function annotation. Through this integration, our methods can also infer functional homology or analogy between genes, which share weak sequence similarity but relevant biological functions, from different species. Results, software and additional information will be available at http://jianpeng.cs.illinois.edu.
该项目旨在开发新的方法来整合来自不同类型分子和测量方法的大量高分辨率数据;目标是确定这些分子是如何随着时间的推移相互作用以实现基本的生物功能的。生物功能是通过生物分子的无数相互作用来实现的,例如当蛋白质与其他蛋白质结合以调节其活性或与核酸结合以调节基因。DNA测序导致了基因组序列及其变异的数据报告的爆炸式增长,以及通过转录谱分析的基因表达;来自蛋白质和代谢物分析的高通量技术的数据流正在迅速赶上。这导致了存档、组织和共享结果数据的知识库不断扩大:通过将实验条件与分子谱联系起来,研究人员开始了解发生了哪些分子相互作用,并从中推断出活细胞中的许多生物功能。从这些数据集中提取有意义的生物学见解在两个方面具有挑战性:数据集非常大,因此它们需要基本处理的计算方法,并且每种类型的数据在许多方面与其他数据不同(噪声类型,错误来源,完整性等),因此它们可能需要不同的统计建模,以便在合并它们之前正确地标准化它们。正确地执行,所得的高维数据集适用于揭示分子相互作用组中功能模块的各种预测分析。该项目的结果将通过网络服务器和开源软件提供。综合研究和教育活动包括跨学科生物信息学课程开发,向高中学生推广以及为代表性不足群体的学生提供研究机会。全面了解基因或蛋白质的各种功能方面,例如参与特定的生物过程,物理/遗传相互作用或疾病关联,对于生物学和转化医学研究都至关重要。由于通过生物学实验详尽地描述基因或蛋白质通常是棘手的,因此系统级知识集成和计算假设生成作为指导实验的有效方法在该领域引起了极大的兴趣。在这个项目中,我们将开发一个新的计算框架,用于异构网络和功能基因组数据的数据集成和降维,以获得低维向量空间中的信息数据表示。为了同时利用分子网络和进化信息,我们将应用所提出的降维技术有效地整合多物种的序列数据和网络数据,以预测基因功能。我们的方法将实现大规模、集成、跨物种、基因组尺度的基因功能注释。通过这种整合,我们的方法还可以推断不同物种基因之间的功能同源性或相似性,这些基因具有较弱的序列相似性,但具有相关的生物学功能。结果、软件和其他信息可在http://jianpeng.cs.illinois.edu上获得。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large-scale integration of heterogeneous pharmacogenomic data for identifying drug mechanism of action
大规模整合异质药物基因组数据以识别药物作用机制
- DOI:10.1142/9789813235533_0005
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Luo, Yunan;Wang, Sheng;Xiao, Jinfeng;Peng, Jian
- 通讯作者:Peng, Jian
Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction
- DOI:10.1371/journal.pcbi.1007283
- 发表时间:2019-09
- 期刊:
- 影响因子:4.3
- 作者:Yufeng Su;Yunan Luo;Xiaoming Zhao;Yang Liu;Jian Peng
- 通讯作者:Yufeng Su;Yunan Luo;Xiaoming Zhao;Yang Liu;Jian Peng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Peng其他文献
Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High-Performance Cathode for Na-Ion Batteries
结构畸变诱导单斜六氰基铁酸镍作为钠离子电池的高性能正极
- DOI:
10.1002/aenm.201803158 - 发表时间:
2019 - 期刊:
- 影响因子:27.8
- 作者:
Yue Xu;Jing Wan;Li Huang;Mingyang Ou;Chenyang Fan;Peng Wei;Jian Peng;Yi Liu;Yuegang Qiu;Xueping Sun;Chun Fang;Qing Li;Jiantao Han;Yunhui Huang;José Antonio Alonso;Yusheng Zhao - 通讯作者:
Yusheng Zhao
Multiple Organ Embolism Secondary to Heparin-Induced Thrombocytopenia after Intra-Aortic Balloon Pump Insertion
主动脉内球囊泵插入后继发于肝素诱导的血小板减少症的多器官栓塞
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jiang;X. Su;Chen W. Liu;Chen Yi;Zhi P. Zhang;D. Song;Jian Peng;Hua Yan - 通讯作者:
Hua Yan
Intercalibration of DMSP-OLS night-time light data by the invariant region method
不变区法对 DMSP-OLS 夜间灯光数据的互标定
- DOI:
10.1080/01431161.2013.820365 - 发表时间:
2013-10 - 期刊:
- 影响因子:3.4
- 作者:
Shengbin He;Jian Peng;Weifeng Li;Xiaohong Zhong - 通讯作者:
Xiaohong Zhong
Nb micro-alloying on enhancing yield strength and hindering intermediate temperature decomposition of a carbon-doped high-entropy alloy
Nb微合金化提高碳掺杂高熵合金的屈服强度并阻碍中温分解
- DOI:
10.1016/j.jallcom.2023.168896 - 发表时间:
2023-01 - 期刊:
- 影响因子:6.2
- 作者:
Meng Wang;Lijun Zhan;Jian Peng - 通讯作者:
Jian Peng
Estimating High-Resolution Soil Moisture Over Mountainous Regions Using Remotely-Sensed Multispectral and Topographic Data
使用遥感多光谱和地形数据估算山区高分辨率土壤湿度
- DOI:
10.1109/jstars.2022.3166974 - 发表时间:
2022 - 期刊:
- 影响因子:5.5
- 作者:
L. Fan;A. Al;F. Frappart;Jian Peng;Jianguang Wen;Q. Xiao;R. Jin;Xiaojun Li;Xiangzhuo Liu;Mengjia Wang;Xiuzhi Chen;Lin Zhao;M. Ma;J. Wigneron - 通讯作者:
J. Wigneron
Jian Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Peng', 18)}}的其他基金
Framework: Software: NSCI: Collaborative Research: Hermes: Extending the HDF Library to Support Intelligent I/O Buffering for Deep Memory and Storage Hierarchy Systems
框架: 软件:NSCI:协作研究:Hermes:扩展 HDF 库以支持深度内存和存储层次系统的智能 I/O 缓冲
- 批准号:
1835669 - 财政年份:2018
- 资助金额:
$ 78.32万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 78.32万 - 项目类别:
Continuing Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 78.32万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 78.32万 - 项目类别:
Continuing Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 78.32万 - 项目类别:
Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 78.32万 - 项目类别:
Continuing Grant
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 78.32万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 78.32万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 78.32万 - 项目类别:
Continuing Grant
CAREER: Learning for Generalization in Large-Scale Cyber-Physical Systems
职业:大规模网络物理系统中的泛化学习
- 批准号:
2239566 - 财政年份:2023
- 资助金额:
$ 78.32万 - 项目类别:
Continuing Grant
CAREER: Large-Scale Exploration and Interpretation of Consumer-Oriented Legal Documents
职业:面向消费者的法律文件的大规模探索和解读
- 批准号:
2237574 - 财政年份:2023
- 资助金额:
$ 78.32万 - 项目类别:
Continuing Grant