CAREER: Geometric Understanding of Locomotion

职业:运动的几何理解

基本信息

  • 批准号:
    1653220
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development (CAREER) award will create a rigorous mathematical framework for analysis of the ways in which animals propel themselves through the world, with the goal of designing bio-inspired robots that approach and surpass the capabilities of natural systems. For example, understanding how the frictional properties of snake scales helps the animal move through mud, could lead to the design of smart skins and propulsive gaits for snake-like robotic systems in hazardous terrain. In particular, this project will use powerful geometric techniques to study the locomotion of systems that are currently poorly understood, like flexible and continuously deformable soft robots, or of movements in which the system makes intermittent contact with the ground. The outcomes of this research will greatly advance the design of innovative robots, especially soft robots. Broader impacts of this work will include increased penetration of geometric methods into the broader community of non-mathematicians, facilitated by accessible examples from animal locomotion, and by a textbook and accompanying visualization software.When systems have joint limits (i.e., they have limbs instead of wheels or propellers), their ability to locomote depends on how effectively they can change their interaction with the environments at different points in a gait cycle. When these interactions are first-order constraints and they change smoothly with the system's shape, locomotive effectiveness can be characterized via a Lie bracket (a structure closely related to the curl of a vector field). This project seeks to extend this concept to include direction-dependent effects (e.g., friction from backwards-pointing spines or bristles), second order dynamics (e.g., elastic tails or wings in air), infinite-dimensional systems, and hybrid systems (e.g. walkers that can lift their feet from the ground. Specific systems that will be made accessible to geometric analysis by this project include, 1) systems with many shape variables, whose curvature is a high-dimensional structure; 2) hybrid systems, which have "corners" in their dynamic curvature; 3) ratcheting systems, whose reaction forces depend on the sign of the relative motion; 4) elastic systems, whose gait cycles partially emerge from their passive dynamics; and 5) gliding systems, whose gait effectiveness is better characterized by momentum transfer than by displacement induced.
该学院早期职业发展(CAREER)奖将创建一个严格的数学框架,用于分析动物在世界上推动自己的方式,目标是设计接近并超越自然系统能力的生物启发机器人。例如,了解蛇鳞片的摩擦特性如何帮助动物在泥泞中移动,可能会导致在危险地形中为蛇形机器人系统设计智能皮肤和推进步态。特别是,该项目将使用强大的几何技术来研究目前知之甚少的系统的运动,如柔性和连续变形的软机器人,或系统与地面间歇接触的运动。这项研究的成果将大大推动创新机器人,特别是软机器人的设计。这项工作的更广泛的影响将包括几何方法向更广泛的非数学家社区的渗透,通过动物运动的可访问示例以及教科书和附带的可视化软件提供便利。他们有四肢而不是轮子或螺旋桨),他们的移动能力取决于他们在步态周期的不同点如何有效地改变他们与环境的相互作用。当这些相互作用是一阶约束,并且它们随着系统的形状平滑地变化时,机车的有效性可以通过李括号(一种与向量场的旋度密切相关的结构)来表征。本项目试图将这一概念扩展到包括方向依赖效应(例如,来自向后指向的棘或刚毛的摩擦),二阶动力学(例如,在空中的弹性尾巴或翅膀)、无限维系统和混合系统(例如,可以将脚从地面抬起的步行者)。通过本项目可以进行几何分析的具体系统包括:1)具有许多形状变量的系统,其曲率是高维结构; 2)混合系统,其动态曲率中有“角”; 3)棘轮系统,其反作用力取决于相对运动的符号; 4)弹性系统,其步态周期部分来自其被动动力学;和5)滑行系统,其步态效果更好地由动量传递而不是由诱导的位移来表征。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimizing Bipedal Maneuvers of Single Rigid-Body Models for Reinforcement Learning
优化单一刚体模型的双足机动以进行强化学习
Geometric Motion Planning for a System on the Cylindrical Surface
圆柱面上系统的几何运动规划
The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems
惯性主导运动系统的最佳步态几何
  • DOI:
    10.1109/tro.2022.3164595
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Hatton, Ross L.;Brock, Zachary;Chen, Shuoqi;Choset, Howie;Faraji, Hossein;Fu, Ruijie;Justus, Nathan;Ramasamy, Suresh
  • 通讯作者:
    Ramasamy, Suresh
Amoeba-inspired swimming through isoperimetric modulation of body shape
An Euler–Bernoulli beam model for soft robot arms bent through self-stress and external loads
  • DOI:
    10.1016/j.ijsolstr.2020.09.015
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    G. Olson;R. Hatton;J. Adams;Y. Mengüç
  • 通讯作者:
    G. Olson;R. Hatton;J. Adams;Y. Mengüç
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ross Hatton其他文献

Optimal gaits for inertia-dominated swimmers with passive elastic joints.
具有被动弹性关节的惯性主导游泳者的最佳步态。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Nathan Justus;Ross Hatton
  • 通讯作者:
    Ross Hatton

Ross Hatton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ross Hatton', 18)}}的其他基金

Development of a high performance laminated transparent top-electrode for emerging thin-film photovoltaics
开发用于新兴薄膜光伏的高性能层压透明顶部电极
  • 批准号:
    EP/V002023/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Collaborative Research: Geometrically Optimal Gait Optimization
协作研究:几何最优步态优化
  • 批准号:
    1826446
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Transformational concepts in window electrode design for emerging thin film photovoltaics
新兴薄膜光伏电池窗口电极设计的变革概念
  • 批准号:
    EP/N009096/1
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
Collaborative Research: Spider Web Vibrations -- Active and Passive Detection
合作研究:蜘蛛网振动——主动和被动检测
  • 批准号:
    1504428
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Leg Mechanics for Dynamic Locomotion
动态运动的腿部力学
  • 批准号:
    1462555
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAPSI: Wrapping Targets with a Casting Manipulator
EAPSI:用铸造操纵器包裹目标
  • 批准号:
    1015195
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship Award

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

AF: Small: Understanding Expansion Phenomena: Graphical, Hypergraphical, Geometric, and Quantum
AF:小:理解膨胀现象:图形、超图形、几何和量子
  • 批准号:
    2326685
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
  • 批准号:
    23K17661
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Understanding Geometric and Electronic Structure Contributions to Ground and Excited State Cu- and Ni-Catalyzed Cross-Coupling Reactions
了解几何和电子结构对基态和激发态铜和镍催化交叉偶联反应的贡献
  • 批准号:
    10589159
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Understanding Geometric and Electronic Structure Contributions to Ground and Excited State Cu- and Ni-Catalyzed Cross-Coupling Reactions
了解几何和电子结构对基态和激发态铜和镍催化交叉偶联反应的贡献
  • 批准号:
    10415184
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Understanding Geometric and Electronic Structure Contributions to Ground and Excited State Cu- and Ni-Catalyzed Cross-Coupling Reactions
了解几何和电子结构对基态和激发态铜和镍催化交叉偶联反应的贡献
  • 批准号:
    10273133
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Geometric and Semantic Structures for Two- and Three-Dimensional Shape Understanding
二维和三维形状理解的几何和语义结构
  • 批准号:
    1953052
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RI: Small: Building Strong Geometric Priors for Total Scene Understanding
RI:小:为整体场景理解构建强大的几何先验
  • 批准号:
    1618806
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
A Graph Theoretic Understanding of an Algebro-Geometric Condition
对代数几何条件的图论理解
  • 批准号:
    483701-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    University Undergraduate Student Research Awards
Understanding of Geometric and Mechanical Information Based on Multi-fingered Hand Manipulation with High-speed Vision
基于高速视觉多指手部操作的几何和机械信息理解
  • 批准号:
    25540113
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
A probabilistic and geometric understanding of transport and metastability in mathematical geophysical flows
对数学地球物理流中输运和亚稳态的概率和几何理解
  • 批准号:
    FT120100025
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    ARC Future Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了