CAREER: Geometric Understanding of Locomotion

职业:运动的几何理解

基本信息

  • 批准号:
    1653220
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development (CAREER) award will create a rigorous mathematical framework for analysis of the ways in which animals propel themselves through the world, with the goal of designing bio-inspired robots that approach and surpass the capabilities of natural systems. For example, understanding how the frictional properties of snake scales helps the animal move through mud, could lead to the design of smart skins and propulsive gaits for snake-like robotic systems in hazardous terrain. In particular, this project will use powerful geometric techniques to study the locomotion of systems that are currently poorly understood, like flexible and continuously deformable soft robots, or of movements in which the system makes intermittent contact with the ground. The outcomes of this research will greatly advance the design of innovative robots, especially soft robots. Broader impacts of this work will include increased penetration of geometric methods into the broader community of non-mathematicians, facilitated by accessible examples from animal locomotion, and by a textbook and accompanying visualization software.When systems have joint limits (i.e., they have limbs instead of wheels or propellers), their ability to locomote depends on how effectively they can change their interaction with the environments at different points in a gait cycle. When these interactions are first-order constraints and they change smoothly with the system's shape, locomotive effectiveness can be characterized via a Lie bracket (a structure closely related to the curl of a vector field). This project seeks to extend this concept to include direction-dependent effects (e.g., friction from backwards-pointing spines or bristles), second order dynamics (e.g., elastic tails or wings in air), infinite-dimensional systems, and hybrid systems (e.g. walkers that can lift their feet from the ground. Specific systems that will be made accessible to geometric analysis by this project include, 1) systems with many shape variables, whose curvature is a high-dimensional structure; 2) hybrid systems, which have "corners" in their dynamic curvature; 3) ratcheting systems, whose reaction forces depend on the sign of the relative motion; 4) elastic systems, whose gait cycles partially emerge from their passive dynamics; and 5) gliding systems, whose gait effectiveness is better characterized by momentum transfer than by displacement induced.
这个教师早期职业发展(职业)奖将创建一个严格的数学框架,以分析动物在世界上推动自己推动自己的方式,目的是设计以生物启发的机器人的方式来接近和超过自然系统的能力。例如,了解蛇形尺度的摩擦特性如何帮助动物穿过泥浆,可能会导致智能皮肤和推进步态的设计,用于在危险的地形中类似蛇形的机器人系统。特别是,该项目将使用强大的几何技术来研究目前知之甚少的系统的运动,例如灵活且连续变形的软机器人,或者系统使与地面间歇性接触的动作。这项研究的结果将大大推动创新机器人的设计,尤其是软机器人。这项工作的更广泛的影响将包括增加几何方法进入更广泛的非恋爱者社区,这是通过动物运动中可访问的例子以及教科书和随附的可视化软件的促进的促进的。当系统具有关节限制时(即,他们具有肢体或俯卧撑者的能力,他们的能力都可以依赖于互动的,因此他们的能力是有效的。当这些相互作用是一阶约束,并且随系统的形状而平稳地变化时,可以通过Lie支架(与向量场的卷曲密切相关的结构)来表征机车的有效性。该项目旨在扩展此概念,以包括方向依赖的效果(例如,向后刺或刷毛的摩擦),二阶动力学(例如,空气中的弹性尾巴或翅膀),无限二维系统,无限尺寸的系统,以及混合系统(例如,可以从地面上启用的脚步,都可以将其访问的系统分析。高维结构; 2)混合系统,它们的动态曲率具有“角落”; 3)棘轮系统,其反作用力取决于相对运动的迹象; 4)弹性系统,其步态循环部分从它们的被动动态中出现; 5)滑行系统,其步态有效性的特征是动量转移比引起的位移。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometric Motion Planning for a System on the Cylindrical Surface
圆柱面上系统的几何运动规划
Optimizing Bipedal Maneuvers of Single Rigid-Body Models for Reinforcement Learning
优化单一刚体模型的双足机动以进行强化学习
Amoeba-inspired swimming through isoperimetric modulation of body shape
The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems
惯性主导运动系统的最佳步态几何
  • DOI:
    10.1109/tro.2022.3164595
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Hatton, Ross L.;Brock, Zachary;Chen, Shuoqi;Choset, Howie;Faraji, Hossein;Fu, Ruijie;Justus, Nathan;Ramasamy, Suresh
  • 通讯作者:
    Ramasamy, Suresh
An Euler–Bernoulli beam model for soft robot arms bent through self-stress and external loads
  • DOI:
    10.1016/j.ijsolstr.2020.09.015
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    G. Olson;R. Hatton;J. Adams;Y. Mengüç
  • 通讯作者:
    G. Olson;R. Hatton;J. Adams;Y. Mengüç
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ross Hatton其他文献

Optimal gaits for inertia-dominated swimmers with passive elastic joints.
具有被动弹性关节的惯性主导游泳者的最佳步态。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Nathan Justus;Ross Hatton
  • 通讯作者:
    Ross Hatton

Ross Hatton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ross Hatton', 18)}}的其他基金

Development of a high performance laminated transparent top-electrode for emerging thin-film photovoltaics
开发用于新兴薄膜光伏的高性能层压透明顶部电极
  • 批准号:
    EP/V002023/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Collaborative Research: Geometrically Optimal Gait Optimization
协作研究:几何最优步态优化
  • 批准号:
    1826446
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Transformational concepts in window electrode design for emerging thin film photovoltaics
新兴薄膜光伏电池窗口电极设计的变革概念
  • 批准号:
    EP/N009096/1
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
Collaborative Research: Spider Web Vibrations -- Active and Passive Detection
合作研究:蜘蛛网振动——主动和被动检测
  • 批准号:
    1504428
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Leg Mechanics for Dynamic Locomotion
动态运动的腿部力学
  • 批准号:
    1462555
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAPSI: Wrapping Targets with a Casting Manipulator
EAPSI:用铸造操纵器包裹目标
  • 批准号:
    1015195
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship Award

相似国自然基金

联合图像理解与几何推断的室内语义三维建模研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于几何和物理性质的深度模型优化研究
  • 批准号:
    61771201
  • 批准年份:
    2017
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
室内场景图像的分析理解和三维重建及模拟技术研究
  • 批准号:
    61772257
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
面向跨相机跟踪的场景几何-语义联合理解与关联
  • 批准号:
    61572061
  • 批准年份:
    2015
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
高时空分辨率的动态对象几何与运动信息获取方法
  • 批准号:
    61271430
  • 批准年份:
    2012
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

AF: Small: Understanding Expansion Phenomena: Graphical, Hypergraphical, Geometric, and Quantum
AF:小:理解膨胀现象:图形、超图形、几何和量子
  • 批准号:
    2326685
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
  • 批准号:
    23K17661
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Surface evolution equations and geometric analysis of viscosity solutions
表面演化方程和粘度解的几何分析
  • 批准号:
    23K03175
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding the Ligand Binding by Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Histone Demethylases
了解非血红素 Fe(II) 和 2-氧化戊二酸依赖性组蛋白去甲基酶的配体结合
  • 批准号:
    10202877
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Understanding Geometric and Electronic Structure Contributions to Ground and Excited State Cu- and Ni-Catalyzed Cross-Coupling Reactions
了解几何和电子结构对基态和激发态铜和镍催化交叉偶联反应的贡献
  • 批准号:
    10589159
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了