Collaborative Research: Spider Web Vibrations -- Active and Passive Detection
合作研究:蜘蛛网振动——主动和被动检测
基本信息
- 批准号:1504428
- 负责人:
- 金额:$ 32.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Web-borne vibrations are the main source of many spiders' sensory information. Most famously, they inform spiders of the location of prey trapped in the web; web vibrations also carry signals from potential mates and alert spiders to the presence of their own predators. Some of these predators in turn exploit web vibrations to send misleading signals that trick spiders into ambushes or to "hide" their approach among other web disturbances. Understanding how web geometry and composition (webs are woven from several types of silk) affect transmission of these cues thus plays an important role in understanding spiders' behavior and ecology. Biologists have investigated these phenomena experimentally, for example, measuring web frequency responses resulting from different geometries. Much less attention has been directed to modeling web vibrations, despite the additional insight such models would provide. In the frequency response study, for instance, the experimenters were limited to working with natural webs or those with threads removed, and could not test the effects of arbitrarily altering thread patterns or types, which would be crucial for understanding web design. This project will fill this gap by exploring the design of spider webs through computational models for the vibration of string networks backed up by a new generation of experiments on biological and artificially-constructed webs. The key broader impact of the proposed work is making sophisticated modern vibration models available to biologists and others whose expertise is not in dynamical systems. How spiders find their prey is a compelling story and will inspire K-12 students with the interplay between physics, math, biology, and engineering; the PIs will develop a simplified 'teaching' version of the interface, to be distributed through Oregon State University's middle-school outreach program and the Berkeley Chapter of "Expanding your Horizons," an organization to promote the inclusion of middle school girls in STEM fields.In particular the PI will investigate how a web's geometry and composition affects the transmission of vibratory signals that spiders use to locate and identify trapped prey items. The PI will apply modern dynamical systems theory and experimental techniques to a recognized need in biological study, and in doing so expands understanding of the physics of networks of strings. Compared to previous research in this area, the proposed work will be the first to explicitly and quantitatively consider whole-web vibration energy pathways, look for nonlinear effects in the vibration response, and experimentally record the full motion of points in the vibrating web. The proposed work will also be the first study to quantitatively investigate the mechanics of "active probing" behavior, in which the spider plucks or shakes its web to look for changes in its dynamic properties, which would indicate the presence of a prey or predator animal in the web.
Web传播振动是许多蜘蛛感觉信息的主要来源。他们最著名的是,他们将猎物的位置被困在网络中。网络振动还带有潜在伴侣的信号,并提醒蜘蛛对自己的捕食者的存在。这些掠食者中的一些反过来剥削了Web振动,以将误导性信号诱骗到伏击中,或在其他Web扰动中“隐藏”其方法。因此,了解网络几何形状和组成(网络是从几种类型的丝绸编织中)如何影响这些提示的传播,因此在理解蜘蛛的行为和生态学中起着重要作用。生物学家已经通过实验研究了这些现象,例如测量了不同几何形状引起的Web频率响应。尽管这种模型提供了更多的见解,但仍将注意力集中在建模Web振动的方面。例如,在频率响应研究中,实验者仅限于使用自然网或删除线程的频率,并且无法测试任意更改线程模式或类型的效果,这对于理解Web设计至关重要。该项目将通过通过计算模型来探索蜘蛛网的设计来填补这一空白,从而通过对生物学和人工构造的网络进行新一代实验来支持的字符串网络的振动。拟议工作的主要更广泛的影响是使生物学家以及其他专业知识不在动态系统中的精致现代振动模型。蜘蛛如何找到他们的猎物是一个引人入胜的故事,并会激发K-12学生与物理,数学,生物学和工程学之间的相互作用的学生; the PIs will develop a simplified 'teaching' version of the interface, to be distributed through Oregon State University's middle-school outreach program and the Berkeley Chapter of "Expanding your Horizons," an organization to promote the inclusion of middle school girls in STEM fields.In particular the PI will investigate how a web's geometry and composition affects the transmission of vibratory signals that spiders use to locate and identify trapped prey items. PI将在生物学研究中将现代动力学系统理论和实验技术应用于公认的需求,并在此过程中扩大对字符串网络物理学的理解。与该领域的先前研究相比,拟议的工作将是第一个明确和定量考虑整个WEB振动能量途径,在振动响应中寻找非线性效应,并通过实验记录振动网络中点的全部运动。拟议的工作还将是第一个定量研究“主动探测”行为的机制的研究,其中蜘蛛摘下或摇动其网络以寻找其动态特性的变化,这表明网络中存在猎物或捕食者动物。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ross Hatton其他文献
Optimal gaits for inertia-dominated swimmers with passive elastic joints.
具有被动弹性关节的惯性主导游泳者的最佳步态。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.4
- 作者:
Nathan Justus;Ross Hatton - 通讯作者:
Ross Hatton
Ross Hatton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ross Hatton', 18)}}的其他基金
Development of a high performance laminated transparent top-electrode for emerging thin-film photovoltaics
开发用于新兴薄膜光伏的高性能层压透明顶部电极
- 批准号:
EP/V002023/1 - 财政年份:2021
- 资助金额:
$ 32.78万 - 项目类别:
Research Grant
Collaborative Research: Geometrically Optimal Gait Optimization
协作研究:几何最优步态优化
- 批准号:
1826446 - 财政年份:2018
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
CAREER: Geometric Understanding of Locomotion
职业:运动的几何理解
- 批准号:
1653220 - 财政年份:2017
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Transformational concepts in window electrode design for emerging thin film photovoltaics
新兴薄膜光伏电池窗口电极设计的变革概念
- 批准号:
EP/N009096/1 - 财政年份:2016
- 资助金额:
$ 32.78万 - 项目类别:
Fellowship
EAPSI: Wrapping Targets with a Casting Manipulator
EAPSI:用铸造操纵器包裹目标
- 批准号:
1015195 - 财政年份:2010
- 资助金额:
$ 32.78万 - 项目类别:
Fellowship Award
相似国自然基金
基于化石与现生证据的二纺蛛总科蜘蛛系统演化研究
- 批准号:32300364
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于形态学特征和分子数据的阿蛛族蜘蛛分类修订、系统发育及分布格局研究(蜘蛛目:管巢蛛科)
- 批准号:32360123
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
蜘蛛包裹丝蛋白AcSp1成丝机理研究
- 批准号:32301039
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
害虫神经细胞内钙离子检测新方法及蜘蛛毒素杀虫评价研究
- 批准号:22304082
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蜘蛛香通过调控ERβ/肠道菌群/HPA轴改善溃疡性结肠炎小鼠焦虑样行为的机制研究
- 批准号:82360810
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: Exploring the interplay between form and function: the force-velocity trade-off in the spider predatory strike.
合作研究:探索形式与功能之间的相互作用:蜘蛛掠夺性攻击中的力与速度的权衡。
- 批准号:
2114561 - 财政年份:2022
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Collaborative Research: Exploring the interplay between form and function: the force-velocity trade-off in the spider predatory strike.
合作研究:探索形式与功能之间的相互作用:蜘蛛掠夺性攻击中的力与速度的权衡。
- 批准号:
2114562 - 财政年份:2022
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
RUI: Collaborative Research: Head Group Preference in Recluse Spider Phospholipase D Toxins
RUI:合作研究:隐士蜘蛛磷脂酶 D 毒素的头群偏好
- 批准号:
1807885 - 财政年份:2018
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Molecular and Material Evolution of Spider Aqueous Glues
合作研究:蜘蛛水胶的分子和材料进化的整合
- 批准号:
1754979 - 财政年份:2018
- 资助金额:
$ 32.78万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Integrating molecular and material evolution of spider aqueous glues
合作研究:RUI:整合蜘蛛水胶的分子和材料进化
- 批准号:
1755142 - 财政年份:2018
- 资助金额:
$ 32.78万 - 项目类别:
Continuing Grant