CAREER: Statistics of Extrema in Complex and Disordered Systems
职业:复杂无序系统中的极值统计
基本信息
- 批准号:1653602
- 负责人:
- 金额:$ 44.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural and social systems involving many interacting agents can accurately be described by probabilistic models. This is the case for a large class of systems in condensed matter physics, data science, finance, computer science, and pure mathematics. The behavior of such complex systems depends crucially on rare events, or extrema, that may have a large impact on their dynamics. This project is a rigorous study of the fundamental patterns that arise in a wide range of complex systems exhibiting many different extrema. The aim is to develop general quantitative methods to understand the statistics of extrema of these systems and to draw new connections with related problems in mathematics and physics. It also involves the advanced training of students in the applications of probability in data science, finance, and computer science in partnership with practitioners in academia and in industry. More precisely, complex systems can be viewed as stochastic processes with strongly correlated random variables. The statistics of extrema of such processes are still poorly understood from a rigorous point of view. Important examples include disordered systems in statistical mechanics (e.g., spin glasses), which are closely related to optimization problems in computer and data sciences. The focus of the project is on developing new probability methods in two instances: realistic spin glasses in statistical mechanics and the Riemann zeta function in number theory. In particular, it builds on recent progress in the description of infinite-dimensional models of spin glasses to propose a new rigorous method to investigate the behavior of realistic (finite-dimensional) spin glasses, which exhibit unusual magnetic behavior due to the presence of many extremal energies. The program also outlines new directions of research in pure mathematics by studying the Riemann zeta function as a disordered system. The objectives are to develop methods of statistical mechanics to study the extreme values of the Riemann zeta function in a short interval of the critical strip, and to explore the implications in number theory.
涉及许多相互作用主体的自然系统和社会系统可以用概率模型精确地描述。对于凝聚态物理、数据科学、金融、计算机科学和纯数学中的大量系统来说,情况就是如此。这种复杂系统的行为主要取决于可能对其动力学产生重大影响的罕见事件或极端事件。这个项目是一个严谨的基本模式的研究,出现在广泛的复杂系统表现出许多不同的极端。目的是发展一般的定量方法来理解这些系统的极值统计,并与数学和物理中的相关问题建立新的联系。它还涉及与学术界和工业界的实践者合作,对学生进行概率在数据科学、金融和计算机科学中的应用的高级培训。更准确地说,复杂系统可以看作是具有强相关随机变量的随机过程。从严格的角度来看,对这些过程的极值的统计仍然知之甚少。重要的例子包括统计力学中的无序系统(如自旋玻璃),它与计算机和数据科学中的优化问题密切相关。该项目的重点是在两种情况下开发新的概率方法:统计力学中的现实自旋玻璃和数论中的黎曼ζ函数。特别是,它建立在描述无限维自旋玻璃模型的最新进展的基础上,提出了一种新的严格方法来研究现实(有限维)自旋玻璃的行为,这些自旋玻璃由于存在许多极端能量而表现出不寻常的磁性行为。该计划还概述了纯数学研究的新方向,通过研究黎曼ζ函数作为一个无序系统。目的是发展统计力学方法来研究临界带短区间内黎曼ζ函数的极值,并探讨其在数论中的意义。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Moments of the Riemann zeta function on short intervals of the critical line
- DOI:10.1214/21-aop1524
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:L. Arguin;Frédéric Ouimet;Maksym Radziwill
- 通讯作者:L. Arguin;Frédéric Ouimet;Maksym Radziwill
On words of non-Hermitian random matrices
关于非厄米随机矩阵的词
- DOI:10.1214/20-aop1496
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dubach, Guillaume;Peled, Yuval
- 通讯作者:Peled, Yuval
On Absence of disorder chaos for spin glasses on $\mathbb{Z} ^{d}$
关于$mathbb{Z} ^{d}$上自旋玻璃不存在无序混沌
- DOI:10.1214/20-ecp311
- 发表时间:2020
- 期刊:
- 影响因子:0.5
- 作者:Arguin, Louis-Pierre;Hanson, Jack
- 通讯作者:Hanson, Jack
Evidence of Random Matrix Corrections for the Large Deviations of Selberg’s Central Limit Theorem
塞尔伯格中心极限定理大偏差的随机矩阵修正的证据
- DOI:10.1080/10586458.2021.2011806
- 发表时间:2021
- 期刊:
- 影响因子:0.5
- 作者:Amzallag, E.;Arguin, L.-P.;Bailey, E.;Hui, K.;Rao, R.
- 通讯作者:Rao, R.
High points of a random model of the Riemann-zeta function and Gaussian multiplicative chaos
黎曼 zeta 函数和高斯乘法混沌的随机模型的亮点
- DOI:10.1016/j.spa.2022.04.017
- 发表时间:2022
- 期刊:
- 影响因子:1.4
- 作者:Arguin, Louis-Pierre;Hartung, Lisa;Kistler, Nicola
- 通讯作者:Kistler, Nicola
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Louis-Pierre Arguin其他文献
Louis-Pierre Arguin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Louis-Pierre Arguin', 18)}}的其他基金
Extreme Value Statistics in Probabilistic Number Theory
概率数论中的极值统计
- 批准号:
2153803 - 财政年份:2022
- 资助金额:
$ 44.6万 - 项目类别:
Continuing Grant
Statistics of Extrema in Disordered Systems and Related Models
无序系统极值统计及相关模型
- 批准号:
1513441 - 财政年份:2015
- 资助金额:
$ 44.6万 - 项目类别:
Continuing Grant
相似海外基金
REU Site: DRUMS Directed Research for Undergraduates in Math and Statistics
REU 网站:DRUMS 为数学和统计学本科生指导的研究
- 批准号:
2349611 - 财政年份:2024
- 资助金额:
$ 44.6万 - 项目类别:
Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 44.6万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 44.6万 - 项目类别:
Research Grant
Computational Statistics to Tackle Modern Slavery
解决现代奴隶制问题的计算统计
- 批准号:
MR/X034992/1 - 财政年份:2024
- 资助金额:
$ 44.6万 - 项目类别:
Fellowship
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
- 批准号:
2340482 - 财政年份:2024
- 资助金额:
$ 44.6万 - 项目类别:
Continuing Grant
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
- 批准号:
EP/X042812/1 - 财政年份:2024
- 资助金额:
$ 44.6万 - 项目类别:
Fellowship
MRC International Statistics & Epidemiology Partnership (ISEP): Strengthening capacity in applied medical statisticians in sub-Saharan Africa
MRC国际统计
- 批准号:
MR/X019888/1 - 财政年份:2024
- 资助金额:
$ 44.6万 - 项目类别:
Research Grant
Conference: Statistics in the Age of AI
会议:人工智能时代的统计
- 批准号:
2349991 - 财政年份:2024
- 资助金额:
$ 44.6万 - 项目类别:
Standard Grant
Conference: The 2024 Joint Research Conference on Statistics in Quality, Industry, and Technology (JRC 2024) - Data Science and Statistics for Industrial Innovation
会议:2024年质量、工业和技术统计联合研究会议(JRC 2024)——数据科学与统计促进产业创新
- 批准号:
2404998 - 财政年份:2024
- 资助金额:
$ 44.6万 - 项目类别:
Standard Grant
LEAPS-MPS: Network Statistics of Rupturing Foams
LEAPS-MPS:破裂泡沫的网络统计
- 批准号:
2316289 - 财政年份:2024
- 资助金额:
$ 44.6万 - 项目类别:
Standard Grant