Extreme Value Statistics in Probabilistic Number Theory

概率数论中的极值统计

基本信息

  • 批准号:
    2153803
  • 负责人:
  • 金额:
    $ 27.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Extreme value statistics is the study of rare events that occur in natural and social systems. The appearance of such rare events may be understood by investigating specific mechanisms arising from the interaction between the components constituting the system. It turns out that a large class of functions in number theory are formidable models to extend the current theory of extreme value statistics. The aim of this project is to develop new probabilistic techniques to describe at various scales the fine statistics of extrema of number-theoretic functions. These techniques will then be applied to related problems in physics and mathematics. The project will provide research training opportunities for undergraduate students and graduate students in computer programming, data science and mathematics.More precisely, the Riemann zeta function (and to a larger extent the Dirichlet L-functions) is a fundamental function in number theory as it encodes the distribution of prime numbers among the integers. Large values of such functions in particular contain information about the location of the primes, yet they remain poorly understood. This research project builds on recent progress to describe the large values of the zeta function in short intervals. The current project aims at developing new probabilistic techniques to describe the precise statistics of the large values of the zeta function as the size of the observation interval is varied. In particular, the research carried out in this project is expected to reveal new hybrid statistics at small scales. The project also seeks to extend the techniques to Dirichlet L-functions, where few results are currently available. The ultimate goal is to build better tools of extreme value theory. The interdisciplinary nature of the project is expected to produce new theoretical and numerical tools in probability as well as in analytic number theory. The theoretical results and numerical experiments in combination will clarify the elusive connection between random matrices and L-functions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
极值统计学是研究自然和社会系统中发生的罕见事件的科学。这种罕见事件的出现可以通过研究组成系统的组分之间相互作用产生的特定机制来理解。事实证明,数论中的一大类函数是扩展当前极值统计理论的强大模型。这个项目的目的是开发新的概率技术来描述在各种尺度上的数论函数极值的精细统计。这些技术将应用于物理和数学中的相关问题。该项目将为本科生和研究生提供计算机编程、数据科学和数学方面的研究培训机会。更准确地说,黎曼zeta函数(以及更大程度上的狄利克雷L函数)是数论中的一个基本函数,因为它编码整数中素数的分布。特别是这些函数的大值包含关于素数位置的信息,但它们仍然知之甚少。该研究项目建立在最近的进展,以描述在短时间间隔的zeta函数的大值。目前的项目旨在开发新的概率技术,以描述随着观测间隔的大小变化zeta函数的大值的精确统计。 特别是,在这个项目中进行的研究预计将揭示新的混合统计在小规模。该项目还寻求将技术扩展到Dirichlet L-函数,目前几乎没有结果。最终目标是建立更好的极值理论工具。该项目的跨学科性质预计将产生新的理论和数值工具的概率以及解析数论。理论结果和数值实验相结合,将澄清随机矩阵和L-functions.This奖项之间难以捉摸的连接反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large Deviation Estimates of Selberg’s Central Limit Theorem and Applications
塞尔伯格中心极限定理的大偏差估计及其应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Louis-Pierre Arguin其他文献

Louis-Pierre Arguin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Louis-Pierre Arguin', 18)}}的其他基金

CAREER: Statistics of Extrema in Complex and Disordered Systems
职业:复杂无序系统中的极值统计
  • 批准号:
    1653602
  • 财政年份:
    2017
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Continuing Grant
Statistics of Extrema in Disordered Systems and Related Models
无序系统极值统计及相关模型
  • 批准号:
    1513441
  • 财政年份:
    2015
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
  • 批准号:
    71903144
  • 批准年份:
    2019
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cosmological Applications of Extreme Value Statistics
极值统计的宇宙学应用
  • 批准号:
    2733543
  • 财政年份:
    2022
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Studentship
BEA Outgoing IAA for the Development of Trade-in-Value-Added Statistics
东亚银行即将离任的 IAA 负责发展增值贸易统计
  • 批准号:
    2044240
  • 财政年份:
    2020
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Contract Interagency Agreement
Extreme value statistics of characteristic polynomials of random matrices and the Riemann zeta-function
随机矩阵特征多项式和黎曼zeta函数的极值统计
  • 批准号:
    1792464
  • 财政年份:
    2016
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Studentship
High Performance and Versatile Image Search Scheme by Statistics of Pixel Value and Digital Image Watermark Method Resistant to Average Attack
高性能、多功能的像素值统计图像搜索方案和抗平均攻击的数字图像水印方法
  • 批准号:
    24560466
  • 财政年份:
    2012
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical modelling of observed precipitation and its application to extreme value statistics in different spatiotemporal scales (Modex)
观测降水统计模型及其在不同时空尺度极值统计中的应用(Modex)
  • 批准号:
    175717341
  • 财政年份:
    2010
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Research Grants
From Centrality To Extremity in Multivariate Statistics: Data Depth, Extreme Value Theory and Applications
多元统计中从中心到极端:数据深度、极值理论与应用
  • 批准号:
    0707053
  • 财政年份:
    2007
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Continuing Grant
Inference Problems in Extreme Value Statistics
极值统计中的推理问题
  • 批准号:
    0604176
  • 财政年份:
    2006
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Continuing Grant
Extreme value theory of large order statistics for non-I.I.D random variables (and) hausdorff dimensions of level sets of multi-parameter random fields
非独立同分布随机变量(和)多参数随机场水平集豪斯多夫维数的大阶统计极值理论
  • 批准号:
    138638-1996
  • 财政年份:
    1999
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme value theory of large order statistics for non-I.I.D random variables (and) hausdorff dimensions of level sets of multi-parameter random fields
非独立同分布随机变量(和)多参数随机场水平集豪斯多夫维数的大阶统计极值理论
  • 批准号:
    138638-1996
  • 财政年份:
    1998
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme value theory of large order statistics for non-I.I.D random variables (and) hausdorff dimensions of level sets of multi-parameter random fields
非独立同分布随机变量(和)多参数随机场水平集豪斯多夫维数的大阶统计极值理论
  • 批准号:
    138638-1996
  • 财政年份:
    1997
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了