CAREER: Integrating Theory and Experiment to Assess the Contribution of Distinct Vascular Segments in Arterial Insufficiency

职业:结合理论和实验来评估不同血管段对动脉供血不足的贡献

基本信息

  • 批准号:
    1654019
  • 负责人:
  • 金额:
    $ 59.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Peripheral arterial disease (PAD) is a major health problem that currently affects more than 10 million Americans and that is expected to become even more prevalent with the aging of the population and increased incidence of obesity and diabetes. PAD is caused by a blockage (often due to atherosclerosis) of a major systemic artery such as the femoral artery that supplies blood to the leg. Due to reduced blood and oxygen delivery to their calf and foot, PAD patients often develop pain when walking that progresses to pain at rest and eventual tissue loss, requiring surgical grafts or, in severe cases, amputation. In addition to lost productivity and reduced quality of life for patients, the annual health care costs for PAD are estimated to be 160-300 billion dollars. Currently, only two medications have been approved by the FDA for treating PAD-associated walking impairment, and both treatments are minimally effective. The lack of sufficient data and understanding of the impact of different blood vessel adaptations on restoring normal blood flow following an occlusion motivates this research work. A combined theoretical and experimental model will be used to design more optimal experiments, provide a mechanism for understanding the significance of adaptations to arterial occlusion within distinct vascular segments, and assist in designing more successful PAD therapies.After a major arterial occlusion there is an immediate drop in flow, followed by a short (minutes), steep flow increase and then a gradual (hours to days) flow increase. However, the ability of the vasculature to regulate flow is significantly altered following a major occlusion, preventing full restoration of normal perfusion. Vascular adaptations such as new vessel formation (angiogenesis) and existing vessel growth (arteriogenesis) have been observed to occur in response to a major arterial occlusion, but the relative roles and timing of each adaptation are unclear, making it difficult to extrapolate an optimal strategy for blood flow compensation. In this project, a mathematical model will be developed to predict how short- (acute) and long-term (chronic) vascular adaptations impact flow after a major arterial occlusion. The work will use a multi-scale differential equation model to couple the dynamics of the acute and chronic time scales and to assess the effects of hemodynamic and metabolic stimuli on the collateral and distal microvasculature following an occlusion. Experimental data from the mouse hindlimb will be used to optimize model parameters. To date, no theoretical model has been able to capture both the short and long term dynamics of flow following a major arterial occlusion based on mechanical factors affecting vessel diameter and number. Such work will truly transform the current understanding of peripheral arterial disease by pinpointing the correct targets and timing for therapeutic agents that will help to restore normal perfusion in PAD patients. The project also provides direct exposure of this interdisciplinary research work to high school, undergraduate, and graduate students, thereby promoting the study of STEM disciplines among future generations and enhancing the scientific culture of our nation.
外周动脉疾病(PAD)是一个主要的健康问题,目前影响超过1000万美国人,预计随着人口老龄化和肥胖症和糖尿病发病率的增加,PAD将变得更加普遍。 PAD是由主要的体循环动脉(如向腿部供血的股动脉)的阻塞(通常是由于动脉粥样硬化)引起的。 由于向小腿和足部输送的血液和氧气减少,PAD患者在行走时经常出现疼痛,这种疼痛会发展为休息时的疼痛,并最终导致组织损失,需要手术移植,或者在严重的情况下截肢。 除了生产力损失和患者生活质量下降外,PAD每年的医疗保健费用估计为1600 - 3000亿美元。 目前,只有两种药物被FDA批准用于治疗PAD相关的行走障碍,而且这两种治疗方法的效果都很低。 缺乏足够的数据和理解的影响,不同的血管适应恢复正常的血流闭塞后,激励这项研究工作。 一个理论和实验相结合的模型将被用来设计更优化的实验,提供一个机制,了解适应不同血管段内动脉闭塞的意义,并协助设计更成功的PAD therapeutic.在主要动脉闭塞后,流量立即下降,随后是一个短暂的(分钟),流量急剧增加,然后逐渐(小时至天)流量增加。然而,血管系统调节血流的能力在严重闭塞后显著改变,阻止了正常灌注的完全恢复。 已经观察到血管适应,如新血管形成(血管生成)和现有血管生长(动脉生成),以响应于大动脉闭塞而发生,但每种适应的相对作用和时间尚不清楚,因此难以外推血流补偿的最佳策略。 在该项目中,将开发一个数学模型来预测主要动脉闭塞后短期(急性)和长期(慢性)血管适应如何影响血流。 这项工作将使用多尺度微分方程模型来耦合急性和慢性时间尺度的动态,并评估血流动力学和代谢刺激对闭塞后的侧支和远端微血管的影响。 来自小鼠后肢的实验数据将用于优化模型参数。 到目前为止,没有理论模型已经能够捕获的短期和长期的动态流动的主要动脉闭塞的基础上影响血管直径和数量的机械因素。 这些工作将真正改变目前对外周动脉疾病的理解,通过精确定位治疗药物的正确靶点和时机,这将有助于恢复PAD患者的正常灌注。 该项目还为高中生、本科生和研究生提供了直接接触这一跨学科研究工作的机会,从而促进了后代对STEM学科的研究,并增强了我们国家的科学文化。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metabolic Signaling in a Theoretical Model of the Human Retinal Microcirculation
人类视网膜微循环理论模型中的代谢信号传导
  • DOI:
    10.3390/photonics8100409
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Arciero, Julia;Fry, Brendan;Albright, Amanda;Mattingly, Grace;Scanlon, Hannah;Abernathy, Mandy;Siesky, Brent;Vercellin, Alice Verticchio;Harris, Alon
  • 通讯作者:
    Harris, Alon
Metabolic blood flow regulation in a hybrid model of the human retinal microcirculation
人体视网膜微循环混合模型中的代谢血流调节
  • DOI:
    10.1016/j.mbs.2023.108969
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Albright, Amanda;Fry, Brendan C.;Verticchio, Alice;Siesky, Brent;Harris, Alon;Arciero, Julia
  • 通讯作者:
    Arciero, Julia
Predicting Experimental Sepsis Survival with a Mathematical Model of Acute Inflammation
用急性炎症的数学模型预测实验性脓毒症生存率
  • DOI:
    10.3389/fsysb.2021.755913
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barber, Jared;Carpenter, Amy;Torsey, Allison;Borgard, Tyler;Namas, Rami A.;Vodovotz, Yoram;Arciero, Julia
  • 通讯作者:
    Arciero, Julia
Predicting retinal tissue oxygenation using an image-based theoretical model
  • DOI:
    10.1016/j.mbs.2018.08.005
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Fry, Brendan C.;Coburn, Ehren Brant;Arciero, Julia
  • 通讯作者:
    Arciero, Julia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Arciero其他文献

Kinetic study of competitive catalytic transfer hydrogenation on a multi-functional molecule: 4-benzyloxy-4′-chlorochalcone
  • DOI:
    10.1007/s11144-013-0627-5
  • 发表时间:
    2013-09-14
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Tyler Nguyen;Julia Arciero;Joshua Piltz;K. Danielle Hartley;Timothy Rickard;Ryan Denton
  • 通讯作者:
    Ryan Denton
Continuum Elastic Model of Epithelial Sheet Migration
  • DOI:
    10.1016/j.bpj.2009.12.878
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Swigon;Julia Arciero;Qi Mi;David Hackam
  • 通讯作者:
    David Hackam

Julia Arciero的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Arciero', 18)}}的其他基金

REU Site: IUPUI REU Program in Mathematics with Applications to Medicine, Neuroscience, and Fluid Dynamics
REU 网站:IUPUI REU 数学及其在医学、神经科学和流体动力学应用中的项目
  • 批准号:
    2150108
  • 财政年份:
    2022
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
REU Site: IUPUI REU Program in Mathematics with Applications to Medicine, Neuroscience, and Engineering
REU 网站:IUPUI REU 数学及其在医学、神经科学和工程中的应用项目
  • 批准号:
    1852146
  • 财政年份:
    2019
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant
REU Site: Mathematics with Applications to Medical Sciences, Biophysics, and Inverse Problems at IUPUI
REU 网站:IUPUI 的数学及其在医学科学、生物物理学和反问题中的应用
  • 批准号:
    1559745
  • 财政年份:
    2016
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Standard Grant

相似海外基金

Integrating theory and data to model evolution under a changing climate
整合理论和数据来模拟气候变化下的进化
  • 批准号:
    DP230102431
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Discovery Projects
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密​​顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
  • 批准号:
    24K17055
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
  • 批准号:
    2339588
  • 财政年份:
    2024
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
  • 批准号:
    10662098
  • 财政年份:
    2023
  • 资助金额:
    $ 59.93万
  • 项目类别:
Collaborative Research: Towards a new framework for interpreting mantle deformation: integrating theory, experiments, and observations spanning seismic to convective timescales
合作研究:建立解释地幔变形的新框架:整合从地震到对流时间尺度的理论、实验和观测
  • 批准号:
    2311897
  • 财政年份:
    2022
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: Towards a new framework for interpreting mantle deformation: integrating theory, experiments, and observations spanning seismic to convective timescales
合作研究:建立解释地幔变形的新框架:整合从地震到对流时间尺度的理论、实验和观测
  • 批准号:
    2218568
  • 财政年份:
    2022
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: Towards a new framework for interpreting mantle deformation: integrating theory, experiments, and observations spanning seismic to convective timescales
合作研究:建立解释地幔变形的新框架:整合从地震到对流时间尺度的理论、实验和观测
  • 批准号:
    2218695
  • 财政年份:
    2022
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
CAREER: Integrating Theory & Data to Uncover the Evolutionary Advantages of Recombination
职业:整合理论
  • 批准号:
    2143063
  • 财政年份:
    2022
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: Towards a new framework for interpreting mantle deformation: integrating theory, experiments, and observations spanning seismic to convective timescales
合作研究:建立解释地幔变形的新框架:整合从地震到对流时间尺度的理论、实验和观测
  • 批准号:
    2218224
  • 财政年份:
    2022
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Continuing Grant
Integrating energy channels and ecological stoichiometry theory using invertebrate food webs
利用无脊椎动物食物网整合能量通道和生态化学计量理论
  • 批准号:
    559882-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 59.93万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了