Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
基本信息
- 批准号:EP/W014378/1
- 负责人:
- 金额:$ 86.99万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Catalysis is a key area of fundamental science which underpins a high proportion of manufacturing industry. Developments in catalytic science and technology will also be essential in achieving energy and environmental sustainability. Progress in catalytic science requires a detailed understanding of processes at the molecular level, in which computation now plays a vital role. When used in conjunction with experiment, computational modelling is able to characterise structures, properties and processes including active site structures, reaction mechanisms and increasingly reaction rates and product distributions. However, despite the power of computational catalysis, currently available methods have limitations in both accuracy and their ability to model the reaction environment. Also, it is practically difficult to model hybrid catalysts, which combine elements of different types of catalyst (e.g. unnatural metal centres incorporated in natural enzymes). Advances in technique are essential if the goal of catalysis by design is to be achieved.A powerful, practical approach to modelling catalytic processes is provided by Quantum Mechanical/Molecular Mechanical (QM/MM) methods, in which the reaction and surroundings are described using an accurate quantum mechanical approach, with the surrounding environment modelled by more approximate classical forcefields. QM/MM has been widely and successfully employed in modelling enzymatic reactions (recognised in the 2013 Nobel prize for Chemistry) but has an equally important role in other areas of catalytic science.The flagship ChemShell code, developed by the STFC team in collaboration with UCL, Bristol and other groups around the world, is a highly flexible and adaptable open source QM/MM software package which allows a range of codes and techniques to be used in the QM and MM regions (www.chemshell.org). The software has been widely and successfully used in modelling enzymatic reactions and catalytic processes in zeolites and on oxide surfaces. It will provide the ideal platform for the developments we are proposing which will take computational catalysis to the next level. These will include the use of high level QM techniques to achieve chemical accuracy, accurate modelling of solvent effects, calculation of spectroscopic signatures allowing direct interaction with experiment, and dynamical approaches for free energy simulations. Crucially, we will bring together methods from different spheres of computational catalysis to enable modelling of hybrid catalytic systems. We will develop flexible and rigorous methods that meet the twin challenges of high-level QM treatment for accuracy with the ability to sample dynamics of the reacting system. Together these methods will allow accurate and predictive modelling of catalytic reactions under realistic conditions. The project will also anticipate the software developments needed to exploit the next generation of exascale high performance computing.We will apply these new techniques to model the catalytic behaviour of a range of engineered heterogeneous, homogeneous and biomolecular catalysts, currently under study in the UK Catalysis Hub. The Hub supports experimental and computational applications across the whole UK catalysis community. This project will provide method development and software engineering that is not covered by the Hub, and thus will complement EPSRC investment in the Hub. Specific systems include methanol synthesis using homogeneous ruthenium complexes, Cu-based artificial enzymes for enantioselective Friedel-Crafts reactions, fluorophosphite-modified rhodium systems for hydroformylation catalysis of alkenes, and non-canonical substitutions in non-heme iron enzymes for C-H functionalisations. These highly topical and potentially industrially relevant systems will allow us both to test and exploit the new software, which promises a step change in our ability to model catalytic systems and reactions.
催化是基础科学的一个关键领域,支撑着高比例的制造业。催化科学和技术的发展对于实现能源和环境的可持续性也至关重要。催化科学的进步需要对分子水平的过程有详细的了解,而计算在分子水平上起着至关重要的作用。当与实验结合使用时,计算建模能够模拟结构,性质和过程,包括活性部位结构,反应机制和越来越多的反应速率和产物分布。然而,尽管计算催化的力量,目前可用的方法在准确性和模拟反应环境的能力方面都有局限性。此外,实际上难以对混合催化剂进行建模,所述混合催化剂组合了不同类型催化剂的联合收割机元素(例如,掺入天然酶中的非天然金属中心)。量子力学/分子力学(QM/MM)方法提供了一种强有力的、实用的催化过程建模方法,该方法使用精确的量子力学方法描述反应和周围环境,周围环境由更近似的经典力场建模。QM/MM已广泛且成功地用于酶反应建模(在2013年诺贝尔化学奖中获得认可),但在催化科学的其他领域也具有同样重要的作用。旗舰ChemShell代码由STFC团队与UCL,布里斯托和世界各地的其他团体合作开发,是一个高度灵活和适应性强的开源QM/MM软件包,允许在QM和MM区域使用一系列代码和技术(www.chemshell.org)。该软件已被广泛和成功地用于模拟酶反应和催化过程中的沸石和氧化物表面。它将为我们提出的发展提供理想的平台,这将把计算催化带到下一个层次。这些将包括使用高水平的QM技术,以实现化学准确性,溶剂效应的准确建模,计算光谱特征,允许直接与实验相互作用,以及自由能模拟的动态方法。至关重要的是,我们将汇集来自计算催化不同领域的方法,以实现混合催化系统的建模。我们将开发灵活和严格的方法,以满足高水平的QM处理的准确性与反应系统的采样动力学的能力的双重挑战。这些方法将允许在现实条件下对催化反应进行准确和预测性的建模。该项目还将预测开发下一代exascale高性能计算所需的软件开发。我们将应用这些新技术来模拟一系列工程多相,均相和生物分子催化剂的催化行为,目前正在英国催化中心进行研究。该中心支持整个英国催化社区的实验和计算应用。该项目将提供中心不包括的方法开发和软件工程,从而补充EPSRC在中心的投资。具体的系统包括使用均相钌络合物的甲醇合成,用于对映选择性Friedel-Crafts反应的Cu基人工酶,用于烯烃加氢催化的氟亚磷酸酯修饰的铑系统,以及用于C-H官能化的非血红素铁酶中的非正则取代。这些高度热门和潜在的工业相关系统将使我们能够测试和利用新软件,这将使我们对催化系统和反应建模的能力发生重大变化。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of Solvent on Selective Catalytic Reduction of Nitrogen Oxides with Ammonia over Cu-CHA Zeolite.
- DOI:10.1021/jacs.2c09823
- 发表时间:2023-01-11
- 期刊:
- 影响因子:15
- 作者:Nasir, Jamal Abdul;Guan, Jingcheng;Keal, Thomas W.;Desmoutier, Alec W.;Lu, You;Beale, Andrew M.;Catlow, C. Richard A.;Sokol, Alexey A.
- 通讯作者:Sokol, Alexey A.
Multiscale QM/MM modelling of catalytic systems with ChemShell
- DOI:10.1039/d3cp00648d
- 发表时间:2023-04-20
- 期刊:
- 影响因子:3.3
- 作者:Lu,You;Sen,Kakali;Keal,Thomas W.
- 通讯作者:Keal,Thomas W.
Computational infrared and Raman spectra by hybrid QM/MM techniques: a study on molecular and catalytic material systems.
- DOI:10.1098/rsta.2022.0234
- 发表时间:2023-07-10
- 期刊:
- 影响因子:5
- 作者:Guan, Jingcheng;Lu, You;Sen, Kakali;Nasir, Jamal Abdul;Desmoutier, Alec W. W.;Hou, Qing;Zhang, Xingfan;Logsdail, Andrew J. J.;Dutta, Gargi;Beale, Andrew M. M.;Strange, Richard W. W.;Yong, Chin;Sherwood, Paul;Senn, Hans M. M.;Catlow, C. Richard A.;Keal, Thomas W. W.;Sokol, Alexey A. A.
- 通讯作者:Sokol, Alexey A. A.
Bulk and Surface Contributions to Ionisation Potentials of Metal Oxides
金属氧化物的体积和表面对电离势的贡献
- DOI:10.1002/ange.202308411
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang X
- 通讯作者:Zhang X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Keal其他文献
Thomas Keal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Keal', 18)}}的其他基金
BEORHN: Bacterial Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟进行硝化反应中活性羟胺的细菌酶氧化
- 批准号:
BB/V016660/1 - 财政年份:2022
- 资助金额:
$ 86.99万 - 项目类别:
Research Grant
Transition metal controlled nitrogen chemistry in zeolite and protein environments using a unified quantum embedding model
使用统一的量子嵌入模型控制沸石和蛋白质环境中的过渡金属氮化学
- 批准号:
EP/R001847/1 - 财政年份:2018
- 资助金额:
$ 86.99万 - 项目类别:
Research Grant
Dynamics of Electron and Proton Transfer Chemistry in Copper and Hybrid Copper-Haem Enzymes
铜和杂化铜血红素酶中电子和质子转移化学的动力学
- 批准号:
BB/M022390/1 - 财政年份:2015
- 资助金额:
$ 86.99万 - 项目类别:
Research Grant
相似国自然基金
热力耦合方程组的并行多尺度算法
- 批准号:11301329
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
- 批准号:50876120
- 批准年份:2008
- 资助金额:36.0 万元
- 项目类别:面上项目
天然生物材料的多尺度力学与仿生研究
- 批准号:10732050
- 批准年份:2007
- 资助金额:200.0 万元
- 项目类别:重点项目
ABR颗粒污泥的多尺度结构形态、理化特征与分子生态学解析
- 批准号:50578012
- 批准年份:2005
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Thermoelectric conversion improvement of Co-free skutterudites through a multiscale approach
通过多尺度方法改进无钴方钴矿的热电转换
- 批准号:
22KF0336 - 财政年份:2023
- 资助金额:
$ 86.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Oxygen reduction reaction (ORR) in fuel cells on carbon-based metal-free electrocatalysts by first-principles multiscale simulations.
通过第一原理多尺度模拟,在碳基无金属电催化剂上进行燃料电池中的氧还原反应(ORR)。
- 批准号:
22KJ2131 - 财政年份:2023
- 资助金额:
$ 86.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Multiscale Modeling of B. Anthracis Surface Layer Assembly and Depolymerization by Nanobodies
纳米抗体对炭疽杆菌表面层组装和解聚的多尺度建模
- 批准号:
10432488 - 财政年份:2022
- 资助金额:
$ 86.99万 - 项目类别:
Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
- 批准号:
EP/W013738/1 - 财政年份:2022
- 资助金额:
$ 86.99万 - 项目类别:
Research Grant
Designing Plk1 Inhibitors through multiscale computational and experimental methods
通过多尺度计算和实验方法设计 Plk1 抑制剂
- 批准号:
10580435 - 财政年份:2022
- 资助金额:
$ 86.99万 - 项目类别:
The Center for Label-free Imagingand Multiscale Biophotonics (CLIMB)
无标记成像和多尺度生物光子学中心 (CLIMB)
- 批准号:
10705169 - 财政年份:2022
- 资助金额:
$ 86.99万 - 项目类别:
Center for Label-free Imaging and Multiscale Biophotonics (CLIMB)
无标记成像和多尺度生物光子学中心 (CLIMB)
- 批准号:
10705138 - 财政年份:2022
- 资助金额:
$ 86.99万 - 项目类别:
Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
- 批准号:
EP/W014580/1 - 财政年份:2022
- 资助金额:
$ 86.99万 - 项目类别:
Research Grant
Multiscale Modeling of B. Anthracis Surface Layer Assembly and Depolymerization by Nanobodies
纳米抗体对炭疽杆菌表面层组装和解聚的多尺度建模
- 批准号:
10615187 - 财政年份:2022
- 资助金额:
$ 86.99万 - 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10558581 - 财政年份:2020
- 资助金额:
$ 86.99万 - 项目类别: