CAREER: Computational Gravitational-Wave Science and Education in the Era of First Observations
职业:首次观测时代的计算引力波科学与教育
基本信息
- 批准号:1654359
- 负责人:
- 金额:$ 40.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A century after Einstein predicted their existence, the Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves--ripples of warped space and time---from a pair of merging black holes. Imminent discoveries in the dawning era of gravitational-wave astronomy could dramatically change our understanding of the universe. This project will help scientists observe as many gravitational waves as possible while learning as much as possible about the waves' sources. Using supercomputers, the PI and students will calculate the gravitational waves from merging black holes and neutron stars, to expedite and respond to LIGO's observations; they will also model the most important source of noise limiting LIGO's reach. By teaching students from local community colleges about supercomputing and gravitational-wave science, the PI and students will help train the next generation of America's STEM workforce. This project will have a substantial positive impact on students from groups traditionally underrepresented in STEM, who will learn transferable skills in research and computing while playing important roles in gravitational-wave science. The PI and student researchers will broadly disseminate their results to other scientists and the public.This award supports an integrated research and education program at California State University, Fullerton. The PI and students will simulate merging black holes and neutron stars, including those with rapid black-hole spins. They will use results from these simulations to help gravitational-wave astronomers extract the most interesting and surprising scientific results from LIGO's observations, including properties of merging black holes and tests of general relativity under the most extreme conditions. The PI and students will also model thermal noise in gravitational-wave detector optics, leveraging the sophisticated techniques used in numerical relativity to model merging black holes. This will help improve the thermal noise of high precision measurements and will increase gravitational-wave detectors' reach and sensitivity to properties of observed gravitational waves. The PI and students will integrate methods and results from their research into an annual, week-long workshop, where STEM majors from local community colleges will gain hands-on experience using a high-performance computing cluster to simulate and visualize merging black holes.
在爱因斯坦预言它们的存在一个世纪后,激光干涉仪引力波天文台(LIGO)发现了引力波--扭曲的空间和时间的涟漪--来自两个合并的黑洞。在引力波天文学的曙光时代即将到来的发现可能会极大地改变我们对宇宙的理解。该项目将帮助科学家观测到尽可能多的引力波,同时尽可能多地了解引力波的来源。使用超级计算机,PI和学生将计算合并黑洞和中子星的引力波,以加快和响应LIGO的观测;他们还将对限制LIGO覆盖范围的最重要噪声源进行建模。通过向当地社区大学的学生传授超级计算和引力波科学,PI和学生将帮助培训美国下一代STEM劳动力。该项目将对STEM中传统上代表性较低的群体的学生产生实质性的积极影响,他们将在研究和计算方面学习可转移的技能,同时在引力波科学中发挥重要作用。PI和学生研究人员将向其他科学家和公众广泛传播他们的成果。该奖项支持加州州立大学富勒顿分校的一个综合研究和教育项目。PI和学生将模拟合并黑洞和中子星,包括那些具有快速黑洞自转的中子星。他们将使用这些模拟的结果来帮助引力波天文学家从LIGO的观测中提取最有趣和最令人惊讶的科学结果,包括合并黑洞的性质和在最极端条件下的广义相对论测试。PI和学生还将在引力波探测器光学中对热噪声进行建模,利用数值相对论中使用的复杂技术来对合并黑洞进行建模。这将有助于改善高精度测量的热噪声,并将增加引力波探测器的覆盖范围和对观测到的引力波特性的灵敏度。PI和学生们将把他们研究的方法和结果整合到一个为期一周的年度研讨会上,来自当地社区大学的STEM专业的学生将获得使用高性能计算集群模拟和可视化合并黑洞的实践经验。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assessing the energetics of spinning binary black hole systems
评估旋转双黑洞系统的能量学
- DOI:10.1103/physrevd.98.104057
- 发表时间:2018
- 期刊:
- 影响因子:5
- 作者:Ossokine, Serguei;Dietrich, Tim;Foley, Evan;Katebi, Reza;Lovelace, Geoffrey
- 通讯作者:Lovelace, Geoffrey
Detection and characterization of spin-orbit resonances in the advanced gravitational wave detectors era
先进引力波探测器时代自旋轨道共振的探测和表征
- DOI:10.1103/physrevd.98.083014
- 发表时间:2018
- 期刊:
- 影响因子:5
- 作者:Afle, Chaitanya;Gupta, Anuradha;Gadre, Bhooshan;Kumar, Prayush;Demos, Nick;Lovelace, Geoffrey;Choi, Han Gil;Lee, Hyung Mok;Mitra, Sanjit;Boyle, Michael
- 通讯作者:Boyle, Michael
Measuring the properties of nearly extremal black holes with gravitational waves
- DOI:10.1103/physrevd.98.044028
- 发表时间:2018-04
- 期刊:
- 影响因子:5
- 作者:K. Chatziioannou;G. Lovelace;M. Boyle;M. Giesler;D. Hemberger;R. Katebi;Lawrence E. Kidder;H. Pfeiffer;M. Scheel;B. Szil'agyi
- 通讯作者:K. Chatziioannou;G. Lovelace;M. Boyle;M. Giesler;D. Hemberger;R. Katebi;Lawrence E. Kidder;H. Pfeiffer;M. Scheel;B. Szil'agyi
The SXS collaboration catalog of binary black hole simulations
- DOI:10.1088/1361-6382/ab34e2
- 发表时间:2019-04
- 期刊:
- 影响因子:3.5
- 作者:M. Boyle;D. Hemberger;D. Iozzo;G. Lovelace;S. Ossokine;H. Pfeiffer;M. Scheel;L. Stein;Charles J. Woo
- 通讯作者:M. Boyle;D. Hemberger;D. Iozzo;G. Lovelace;S. Ossokine;H. Pfeiffer;M. Scheel;L. Stein;Charles J. Woo
High-accuracy numerical models of Brownian thermal noise in thin mirror coatings
薄镜涂层中布朗热噪声的高精度数值模型
- DOI:10.1088/1361-6382/acad62
- 发表时间:2023
- 期刊:
- 影响因子:3.5
- 作者:Vu, Nils L.;Rodriguez, Samuel;Włodarczyk, Tom;Lovelace, Geoffrey;P Pfeiffer, Harald;S Bonilla, Gabriel;Deppe, Nils;Hébert, François;E Kidder, Lawrence;Moxon, Jordan
- 通讯作者:Moxon, Jordan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey Lovelace其他文献
Geoffrey Lovelace的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey Lovelace', 18)}}的其他基金
The CSUF-led partnership for inclusion of underrepresented groups in gravitational-wave astronomy
CSUF 领导的伙伴关系旨在将代表性不足的群体纳入引力波天文学
- 批准号:
2219109 - 财政年份:2022
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant
RUI: Next-Generation Numerical Relativity for Future Gravitational-Wave Observatories
RUI:未来引力波天文台的下一代数值相对论
- 批准号:
2208014 - 财政年份:2022
- 资助金额:
$ 40.01万 - 项目类别:
Standard Grant
Collaborative Research: The Next Generation of Gravitational Wave Detectors
合作研究:下一代引力波探测器
- 批准号:
1836734 - 财政年份:2018
- 资助金额:
$ 40.01万 - 项目类别:
Standard Grant
Collaborative Research: LSC Center for Coatings Research
合作研究:LSC 涂料研究中心
- 批准号:
1708035 - 财政年份:2017
- 资助金额:
$ 40.01万 - 项目类别:
Standard Grant
RUI: Computational Gravitational-Wave Research for the Era of First Observations
RUI:首次观测时代的计算引力波研究
- 批准号:
1606522 - 财政年份:2016
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant
MRI: Acquisition of a High-Performance Computer Cluster for Gravitational-Wave Astronomy with Advanced LIGO
MRI:使用先进的 LIGO 购买用于引力波天文学的高性能计算机集群
- 批准号:
1429873 - 财政年份:2014
- 资助金额:
$ 40.01万 - 项目类别:
Standard Grant
RUI: Numerical Simulations of Merging Black Holes and Neutron Stars
RUI:黑洞和中子星合并的数值模拟
- 批准号:
1307489 - 财政年份:2013
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
- 批准号:
10096988 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
EU-Funded
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
Collaborative R&D
Computational Tropical Geometry and its Applications
计算热带几何及其应用
- 批准号:
MR/Y003888/1 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
Fellowship
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
Research Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
Standard Grant
MFB: Better Homologous Folding using Computational Linguistics and Deep Learning
MFB:使用计算语言学和深度学习更好的同源折叠
- 批准号:
2330737 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
- 批准号:
2349174 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant