CAREER: Two Photon Laser Cooling of Atomic Hydrogen

职业:原子氢的双光子激光冷却

基本信息

  • 批准号:
    1654425
  • 负责人:
  • 金额:
    $ 51.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

For this project, two-photon laser cooling techniques for atomic hydrogen will be developed. Hydrogen is the simplest stable atom and, as such, it provides a unique platform to test our most fundamental physical theories. Increasingly precise determinations of the transition frequencies in hydrogen help to determine the Rydberg constant and the proton charge radius and ultimately provide a rigorous test of quantum electrodynamics. While experiments measuring the transitions in hydrogen have steadily increased in precision, the finite temperature of the atoms has remained a serious limitation. Therefore, a reduction of the temperature through laser cooling would enable much more accurate measurements and is the scientific focus of this effort. For the education objectives of the project, an interactive experiment station will be developed alongside The Little Shop of Physics at Colorado State University to explore the coherence properties of laser light, and public lectures will be offered on topics related to the research program.Single-photon laser cooling of hydrogen requires vacuum ultraviolet radiation that is very difficult to produce and manipulate. The two-photon laser cooling proposed here is an alternative, which requires the simultaneous absorption of two photons and requires radiation with only half the photon energy. While this radiation is much easier to produce, two-photon cooling schemes require high average power to achieve rapid cooling. Therefore the enhancement of this radiation inside an optical cavity is a major component of this research. The cavity-enhanced radiation will be overlapped with an atomic hydrogen beam within a magnetic guide enabling one-dimensional laser cooling. After cooling is demonstrated, the cold hydrogen source will be utilized to determine the energy levels in hydrogen with improved precision and reduced systematics.
在这个项目中,将开发氢原子的双光子激光冷却技术。氢是最简单的稳定原子,因此,它提供了一个独特的平台来测试我们最基本的物理理论。 越来越精确的氢跃迁频率的测定有助于确定里德伯常数和质子电荷半径,并最终提供量子电动力学的严格测试。虽然测量氢原子跃迁的实验在精度上稳步提高,但原子的有限温度仍然是一个严重的限制。因此,通过激光冷却降低温度将使测量更加准确,这是这项工作的科学重点。 为了实现教育目的,将与科罗拉多州立大学的The Little Shop of Physics一起,建设探索激光的相干性的互动实验站,并举办相关课题的公开讲座。氢的单光子激光冷却需要真空紫外线,这是很难产生和操作的。这里提出的双光子激光冷却是一种替代方案,它需要同时吸收两个光子,并且只需要一半光子能量的辐射。 虽然这种辐射更容易产生,但双光子冷却方案需要高平均功率才能实现快速冷却。 因此,增强这种辐射内的光学腔是本研究的一个主要组成部分。腔增强辐射将与磁引导内的原子氢束重叠,从而实现一维激光冷却。 在冷却被证明后,冷氢源将被用来确定氢中的能级,提高精度和减少系统性。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measurement of the 2S1/2−8D5/2 Transition in Hydrogen
氢中 2S1/2→8D5/2 转变的测量
  • DOI:
    10.1103/physrevlett.128.023001
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Brandt, A. D.;Cooper, S. F.;Rasor, C.;Burkley, Z.;Matveev, A.;Yost, D. C.
  • 通讯作者:
    Yost, D. C.
Cavity-enhanced deep ultraviolet laser for two-photon cooling of atomic hydrogen
  • DOI:
    10.1364/ol.43.001375
  • 发表时间:
    2018-03-15
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Cooper, S. F.;Burkley, Z.;Yost, D. C.
  • 通讯作者:
    Yost, D. C.
Reduced phase noise in an erbium frequency comb via intensity noise suppression
通过强度噪声抑制降低铒频率梳中的相位噪声
  • DOI:
    10.1364/oe.25.018175
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Brandt, A. D.;Cooper, S. F.;Burkley, Z.;Yost, D. C.
  • 通讯作者:
    Yost, D. C.
Ramsey Spectroscopy of the 2S1/2 Hyperfine Interval in Atomic Hydrogen
原子氢中 2S1/2 超精细区间的 Ramsey 能谱
  • DOI:
    10.1103/physrevlett.130.203001
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bullis, R. G.;Rasor, C.;Tavis, W. L.;Johnson, S. A.;Weiss, M. R.;Yost, D. C.
  • 通讯作者:
    Yost, D. C.
Cryogenic atomic hydrogen beam apparatus with velocity characterization
  • DOI:
    10.1063/1.5129156
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Cooper, S. F.;Brandt, A. D.;Yost, D. C.
  • 通讯作者:
    Yost, D. C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dylan Yost其他文献

Dylan Yost的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dylan Yost', 18)}}的其他基金

PM: Precision Laser Spectroscopy of 2S-nS Two-Photon Transitions in Hydrogen
PM:氢气中 2S-nS 双光子跃迁的精密激光光谱
  • 批准号:
    2207298
  • 财政年份:
    2022
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
激发态氢气分子(e,2e)反应三重微分截面的高阶波恩近似和two-step mechanism修正
  • 批准号:
    11104247
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Upright two-photon microscope for intravital fluorescence imaging and photostimulation
用于活体荧光成像和光刺激的正置双光子显微镜
  • 批准号:
    537547683
  • 财政年份:
    2024
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Major Research Instrumentation
Two Photon Polymerization Equipment
二光子聚合设备
  • 批准号:
    537082733
  • 财政年份:
    2024
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Major Research Instrumentation
In Vivo Function and Metabolism Evaluation of Glaucomatous RGCs by Two-Photon Scanning Laser Ophthalmology
双光子扫描激光眼科评价青光眼 RGC 的体内功能和代谢
  • 批准号:
    10660761
  • 财政年份:
    2023
  • 资助金额:
    $ 51.45万
  • 项目类别:
Investigating the Recruitment of Different Neuronal Subpopulations by Intracortical Micro Stimulation Using Two Photon-Microscopy
使用两个光子显微镜研究皮质内微刺激对不同神经元亚群的招募
  • 批准号:
    10604754
  • 财政年份:
    2023
  • 资助金额:
    $ 51.45万
  • 项目类别:
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
  • 批准号:
    2319406
  • 财政年份:
    2023
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Continuing Grant
Validation and Optimization of Two-Photon Dendritic Voltage Imaging in Vivo
体内双光子树突电压成像的验证和优化
  • 批准号:
    10658307
  • 财政年份:
    2023
  • 资助金额:
    $ 51.45万
  • 项目类别:
In vivo two-photon imaging of vascular invasion and stem cell translocation in calvarial bone
颅骨血管侵袭和干细胞易位的体内双光子成像
  • 批准号:
    10603163
  • 财政年份:
    2023
  • 资助金额:
    $ 51.45万
  • 项目类别:
Deliberate Design and Synthesis of Thionated Organic Photosensitizers Activated by One- and Two-Photon Absorption in the Near-Infrared
近红外一光子和二光子吸收激活的硫代有机光敏剂的精心设计与合成
  • 批准号:
    2246805
  • 财政年份:
    2023
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Standard Grant
All holographic two-photon electrophysiology
全全息双光子电生理学
  • 批准号:
    10616937
  • 财政年份:
    2023
  • 资助金额:
    $ 51.45万
  • 项目类别:
3D Scanning Two-photon Fiberscope Technology for Simultaneous Multi-region Multi-cell-type Imaging in Freely-moving Rodents
3D 扫描双光子纤维镜技术,可对自由移动的啮齿动物进行同步多区域多细胞型成像
  • 批准号:
    10660682
  • 财政年份:
    2023
  • 资助金额:
    $ 51.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了