PM: Precision Laser Spectroscopy of 2S-nS Two-Photon Transitions in Hydrogen

PM:氢气中 2S-nS 双光子跃迁的精密激光光谱

基本信息

  • 批准号:
    2207298
  • 负责人:
  • 金额:
    $ 58.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

For this project, a laser will be used to probe the internal quantum states of atomic hydrogen. Hydrogen is the simplest atom and is comprised of only one electron and one proton. Due to this simplicity, the theory describing hydrogen is very well-developed and precise measurements in hydrogen can provide a stringent test of our best physical theories and determine key fundamental constants of nature. One constant that can be determined through hydrogen measurements is the proton size, which can also be measured at high-energy physics facilities where electrons are scattered off of protons, or through measurements of an exotic form of hydrogen where the electron is replaced by a heavier fundamental particle called a muon. Determinations of the proton size in these different physical systems have produced inconsistencies, which may be indicating a problem with our current theories, or the need for additional theories. This project will help bring clarity by providing measurements with an order of magnitude less uncertainty over previous measurements of the same hydrogen states. The planned experiments will train students in the fields of atomic, molecular, and optical physics, precision laser science, and precision measurement. Ultimately, this project could provide more reliable values for our fundamental constants, establish consistency in the physical constants derived from different physical systems and within different scientific disciplines, or possibly provide indications of new physical laws. The goal of this project is to perform high-precision laser spectroscopy of atomic hydrogen. The specific transitions to be measured will be the hydrogen 2S-nS two-photon transitions (with n between 8 and 12). In conjunction with well-developed hydrogen theory, these measurements can be used to extract the Rydberg constant and proton charge radius. Previous determinations of these constants in different physical systems – such as other hydrogen transitions, measurements in muonic hydrogen, and electron scattering – have produced inconsistencies which may indicate new physics. The spectroscopy will be performed on a cryogenic and velocity-characterized hydrogen beam, and the spectroscopy laser will be a cavity-enhanced continuous-wave Ti:sapphire laser referenced to a coherent optical frequency comb. In previous measurements, the AC Stark shift broadened and distorted spectroscopic resonances which introduced systematic uncertainty. However, for these experiments, an additional laser with a wavelength of approximately 650 nm will be used to cancel the AC Stark shift. This cancellation will allow for the recovery of narrow Lorentzian resonances with widths approaching the natural linewidths – between 50 kHz and 144 kHz – and absolute frequency measurements with relative uncertainties of less than 1 part in a trillion (twelve digits of accuracy), which represents a one order of magnitude decrease in uncertainty over previous measurements of those same transitions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个项目中,激光将被用来探测原子氢的内部量子态。氢是最简单的原子,它只由一个电子和一个质子组成。由于这种简单性,描述氢的理论非常完善,对氢的精确测量可以为我们最好的物理理论提供严格的测试,并确定自然的关键基本常数。可以通过测量氢来确定的一个常数是质子的大小,这也可以在高能物理设施中测量,在那里电子从质子中散射出来,或者通过测量一种奇异形式的氢,在那里电子被一种更重的基本粒子取代,称为μ子。对这些不同物理系统中质子大小的测定产生了不一致,这可能表明我们当前的理论存在问题,或者需要其他理论。这个项目将通过提供比以前测量相同氢状态的测量少一个数量级的不确定性来帮助带来清晰度。计划中的实验将培养学生在原子、分子、光学物理、精密激光科学和精密测量等领域的知识。最终,这个项目可以为我们的基本常数提供更可靠的值,建立来自不同物理系统和不同科学学科的物理常数的一致性,或者可能提供新的物理定律的指示。本项目的目标是对原子氢进行高精度激光光谱分析。要测量的具体跃迁将是氢的2S-nS双光子跃迁(n在8和12之间)。结合发达的氢理论,这些测量可以用来提取里德伯常数和质子电荷半径。以前对不同物理系统中这些常数的测定——比如其他氢跃迁、介子氢的测量和电子散射——产生了不一致的结果,这可能预示着新的物理学。光谱将在低温和速度表征的氢光束上进行,光谱激光器将是参考相干光学频率梳的腔增强连续波Ti:蓝宝石激光器。在以前的测量中,交流电斯塔克位移使光谱共振变宽和扭曲,从而引入了系统的不确定性。然而,在这些实验中,将使用一个波长约为650纳米的额外激光来抵消交流斯塔克位移。这种取消将允许恢复宽度接近自然线宽的窄洛伦兹共振-在50千赫和144千赫之间-以及相对不确定度小于万亿分之一(十二位精度)的绝对频率测量,这代表了不确定度比以前测量相同转换的不确定度降低了一个数量级。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ramsey Spectroscopy of the 2S1/2 Hyperfine Interval in Atomic Hydrogen
原子氢中 2S1/2 超精细区间的 Ramsey 能谱
  • DOI:
    10.1103/physrevlett.130.203001
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bullis, R. G.;Rasor, C.;Tavis, W. L.;Johnson, S. A.;Weiss, M. R.;Yost, D. C.
  • 通讯作者:
    Yost, D. C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dylan Yost其他文献

Dylan Yost的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dylan Yost', 18)}}的其他基金

CAREER: Two Photon Laser Cooling of Atomic Hydrogen
职业:原子氢的双光子激光冷却
  • 批准号:
    1654425
  • 财政年份:
    2017
  • 资助金额:
    $ 58.36万
  • 项目类别:
    Continuing Grant

相似国自然基金

High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Flexible Laser-based manufacturing through precision photon distribution
通过精密光子分布实现灵活的激光制造
  • 批准号:
    10108596
  • 财政年份:
    2024
  • 资助金额:
    $ 58.36万
  • 项目类别:
    EU-Funded
Flexible Laser-based manufacturing through precision photon distribution
通过精密光子分布实现灵活的激光制造
  • 批准号:
    10097911
  • 财政年份:
    2024
  • 资助金额:
    $ 58.36万
  • 项目类别:
    EU-Funded
A High Precision Laser-based Mobile SEnsor for Detection of Trace Amounts of Hydrogen
用于检测痕量氢气的高精度激光移动传感器
  • 批准号:
    EP/Y034457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.36万
  • 项目类别:
    Research Grant
Development of Ultra-short Pulsed Laser Micro-precision Processing Technology by High-speed Stress Control
高速应力控制超短脉冲激光微精密加工技术发展
  • 批准号:
    22KJ0935
  • 财政年份:
    2023
  • 资助金额:
    $ 58.36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Accurate Electronic and Vibrational Structure Calculations of Metal-Containing Small Molecules of Importance to Precision Measurement and Laser Cooling
含金属小分子的精确电子和振动结构计算对于精密测量和激光冷却具有重要意义
  • 批准号:
    2309253
  • 财政年份:
    2023
  • 资助金额:
    $ 58.36万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a Laser System for High Precision Spectroscopy and Trapping Neutral Holmium
设备: MRI:轨道 1 获取用于高精度光谱和捕获中性钬的激光系统
  • 批准号:
    2319917
  • 财政年份:
    2023
  • 资助金额:
    $ 58.36万
  • 项目类别:
    Standard Grant
Precision picosecond laser for the microstructuring of materials
用于材料微结构的精密皮秒激光器
  • 批准号:
    516836168
  • 财政年份:
    2023
  • 资助金额:
    $ 58.36万
  • 项目类别:
    Major Research Instrumentation
Chemical-selective real-time laser precision control of biomolecules
生物分子的化学选择性实时激光精密控制
  • 批准号:
    10810420
  • 财政年份:
    2022
  • 资助金额:
    $ 58.36万
  • 项目类别:
Precision Metrology Using Coherent Transient Effects and Cold Atom Interferometry Based On Homebuilt, Auto-locked Laser Systems
使用基于自制自动锁定激光系统的相干瞬态效应和冷原子干涉测量的精密计量
  • 批准号:
    RGPIN-2020-06114
  • 财政年份:
    2022
  • 资助金额:
    $ 58.36万
  • 项目类别:
    Discovery Grants Program - Individual
Chemical-selective real-time laser precision control of biomolecules
生物分子的化学选择性实时激光精密控制
  • 批准号:
    10501038
  • 财政年份:
    2022
  • 资助金额:
    $ 58.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了