CAREER: Visualizing Emergent Electronic States Near Quantum Phase Transitions

职业:可视化接近量子相变的新兴电子态

基本信息

  • 批准号:
    1654482
  • 负责人:
  • 金额:
    $ 53.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical abstract:Unconventional superconductivity is a fascinating state of quantum matter. Its absolute zero resistivity promises the future of clean energy transmission and magnetically-levitated transportation without friction. Superconductivity has been challenging the scientific community for three decades. Unlike in simple metals, where electrons move freely, in unconventional superconductors they are mostly confined in two dimensional planes. This restriction, together with their mutual stronger interaction, create a "traffic jam" of electrons. Externally, altering the number of the electrons leads to various novel states of matter, such as superconductivity and exotic electronic patterns. It remains unclear whether these different electronic states coexist or compete. Using a scanning tunneling microscope, an experimental technique that locally visualizes the electrons, and resonant x-ray scattering, an experimental probe of global electronic states, the research team aims to investigate how these electronic states emerge in various correlated material systems. An important question to be answered is how external tuning can locally destroy one ordered state and enhance another. The project is designed to advance our fundamental understanding of superconductivity and provide means for enhancing their transition temperatures. Educational goals result from this research through outreach activities utilizing the principle investigator's research tools that will amaze and inspire K-12 students with live-demonstrations and hands-on experimentations as well as provide explicit education and training of undergraduate and graduate students.Technical abstract:Identifying broken symmetry states near quantum phase transitions remains a key objective of strongly correlated electron systems. A challenging goal is the microscopic understanding of emergent superconductivity. Central to this challenge is the local coexistence of various electronic states, such as nematic, charge, and orbital ordering that preempt, promote, or are intertwined with superconductivity. Probing and visualizing the microscopic origin of these ordered states and deliberately tuning them is the key objective towards understanding and controlling superconductivity. The research program aims to visualize and tune broken symmetry states in d- and f-correlated electron systems near quantum phase transitions. The research team uses a new approach that enables to uniaxially strain these material systems and visualize their response in the electronic density of states through spectroscopic imaging with the scanning tunneling microscope and resonant x-ray scattering. The research program's goal is to discover and understand novel phases of matter in correlated material systems that may promote, enhance, or twist superconductivity. Natural broader impacts result from this research through outreach activities that aim to amaze and inspire K-12 students. Some of these activities involve live demonstrations and hands-on experimentations, such as cryogenic cooling, superconducting levitation and transportation to be performed at the Greater Binghamton Soccer Dome, the Kopernik Observatory & Science Center, and local elementary schools. A graduate level course on experimental techniques in condensed matter is developed by the principle investigator that provides explicit education and training for undergraduate and graduate students.
非技术摘要:非常规超导是一种令人着迷的量子物质状态。其绝对零电阻率有望实现清洁能源传输和无摩擦磁悬浮运输的未来。三十年来,超导性一直在挑战科学界。与电子自由移动的简单金属不同,在非常规超导体中,它们大多被限制在二维平面内。这种限制,加上它们之间更强的相互作用,造成了电子的“交通堵塞”。从外部来看,改变电子数量会导致各种新颖的物质状态,例如超导性和奇异的电子模式。目前尚不清楚这些不同的电子状态是共存还是竞争。研究小组使用扫描隧道显微镜(一种局部可视化电子的实验技术)和共振 X 射线散射(一种全局电子态的实验探针)来研究这些电子态如何在各种相关材料系统中出现。需要回答的一个重要问题是外部调整如何能够局部破坏一个有序状态并增强另一个有序状态。该项目旨在增进我们对超导性的基本理解,并提供提高其转变温度的方法。这项研究的教育目标是通过利用主要研究者的研究工具进行的外展活动而产生的,这些活动将通过现场演示和动手实验让 K-12 学生惊叹和启发,并为本科生和研究生提供明确的教育和培训。技术摘要:识别量子相变附近的破缺对称态仍然是强相关电子系统的一个关键目标。一个具有挑战性的目标是对新兴超导性的微观理解。这一挑战的核心是各种电子态的局部共存,例如抢占、促进或与超导性交织在一起的向列态、电荷态和轨道有序态。探测和可视化这些有序状态的微观起源并有意调整它们是理解和控制超导性的关键目标。该研究项目旨在可视化和调整量子相变附近 d 和 f 相关电子系统中的破缺对称态。研究小组采用了一种新方法,能够对这些材料系统进行单轴应变,并通过扫描隧道显微镜和共振 X 射线散射的光谱成像来可视化它们在电子态密度中的响应。该研究项目的目标是发现和理解相关材料系统中可能促进、增强或扭曲超导性的新物质相。这项研究通过旨在让 K-12 学生惊叹和启发的外展活动自然产生更广泛的影响。其中一些活动涉及现场演示和动手实验,例如将在大宾厄姆顿足球场、哥白尼天文台和科学中心以及当地小学进行的低温冷却、超导悬浮和运输。凝聚态实验技术的研究生课程由主要研究者开发,为本科生和研究生提供明确的教育和培训。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surface state evolution induced by magnetic order in axion insulator candidate EuIn2As2
  • DOI:
    10.1103/physrevb.106.125156
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingda Gong;Divyanshi Sar;J. Friedman;D. Kaczorowski;S. Razek;Wei‐Cheng Lee;P. Aynajian
  • 通讯作者:
    Mingda Gong;Divyanshi Sar;J. Friedman;D. Kaczorowski;S. Razek;Wei‐Cheng Lee;P. Aynajian
Emergent charge order near the doping-induced Mott-insulating quantum phase transition in Sr3Ru2O7
  • DOI:
    10.1038/s42005-019-0138-4
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Justin Leshen;Mariam Kavai;I. Giannakis;Y. Kaneko;Y. Tokura;S. Mukherjee;Wei‐Cheng Lee;P. Aynajian
  • 通讯作者:
    Justin Leshen;Mariam Kavai;I. Giannakis;Y. Kaneko;Y. Tokura;S. Mukherjee;Wei‐Cheng Lee;P. Aynajian
Physicists hunt for room-temperature superconductors that could revolutionize the world’s energy system
物理学家寻找可以彻底改变世界能源系统的室温超导体
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pegor Aynajian
  • 通讯作者:
    Pegor Aynajian
Coexisting Kondo hybridization and itinerant f-electron ferromagnetism in UGe2
  • DOI:
    10.1103/physrevresearch.4.l022030
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Giannakis;Divyanshi Sar;J. Friedman;Chang‐Jong Kang;M. Janoschek;P. Das;E. Bauer;G. Kotliar;P. Aynajian
  • 通讯作者:
    I. Giannakis;Divyanshi Sar;J. Friedman;Chang‐Jong Kang;M. Janoschek;P. Das;E. Bauer;G. Kotliar;P. Aynajian
High temperature singlet-based magnetism from Hund’s rule correlations
  • DOI:
    10.1038/s41467-019-08497-3
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    L. Miao;Rourav Basak;S. Ran;Yishuai Xu;Erica Kotta;Haowei He;J. Denlinger;Y. Chuang;Yang Zhao;Zhijun Xu;J. Lynn;J. Jeffries;S. Saha;I. Giannakis;P. Aynajian;Chang‐Jong Kang;Yilin Wang;G. Kotliar;N. Butch;L. Wray
  • 通讯作者:
    L. Miao;Rourav Basak;S. Ran;Yishuai Xu;Erica Kotta;Haowei He;J. Denlinger;Y. Chuang;Yang Zhao;Zhijun Xu;J. Lynn;J. Jeffries;S. Saha;I. Giannakis;P. Aynajian;Chang‐Jong Kang;Yilin Wang;G. Kotliar;N. Butch;L. Wray
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pegor Aynajian其他文献

Pegor Aynajian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Visualizing Novel Electronic Orders in Bilayer Graphene Systems
可视化双层石墨烯系统中的新型电子顺序
  • 批准号:
    2312311
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Continuing Grant
Visualizing Janowska: Creating a Digital Architectural Model of a Nazi Concentration Camp
可视化 Janowska:创建纳粹集中营的数字建筑模型
  • 批准号:
    AH/X00774X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Fellowship
Development of 320x256 pixel metamaterial infrared image sensors for visualizing invisible gases
开发用于可视化不可见气体的 320x256 像素超材料红外图像传感器
  • 批准号:
    23H01883
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Ligand-tethered Cu-responsive protein labeling chemical tool for visualizing Cu-release at synaptic cleft
开发配体束缚的铜响应蛋白标记化学工具,用于可视化突触间隙铜的释放
  • 批准号:
    22KJ1889
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Visualizing Photon Induced Dynamics in Polyatomic Molecules using Femtosecond Pump-Probe Laser Pulses
使用飞秒泵浦探测激光脉冲可视化多原子分子中的光子诱发动力学
  • 批准号:
    2306982
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Continuing Grant
Visualizing gender stereotypes surrounding female doctors and critical review of support for female doctors
围绕女医生的性别刻板印象的可视化以及对女医生支持的严格审查
  • 批准号:
    23K11681
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of CMOS image sensor for visualizing wavelength information and application in the biotechnology field
波长信息可视化CMOS图像传感器的开发及其在生物技术领域的应用
  • 批准号:
    23KJ1144
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigation of a gamma-ray Compton camera for visualizing dose distribution during proton therapy
研究用于可视化质子治疗期间剂量分布的伽马射线康普顿相机
  • 批准号:
    23H03767
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Label-free volumetric microscopy for visualizing intracellular motility of tumor cell culture
用于可视化肿瘤细胞培养物细胞内运动的无标记体积显微镜
  • 批准号:
    22KF0058
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Visualizing light elements by attosecond X-ray scattering
通过阿秒 X 射线散射可视化轻元素
  • 批准号:
    22KK0233
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了