REU Site: Interdisciplinary Integration in Statistical Learning and Data Mining
REU 网站:统计学习和数据挖掘的跨学科整合
基本信息
- 批准号:1659288
- 负责人:
- 金额:$ 25.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This NSF supported REU Site will provide undergraduate students interdisciplinary research experience in statistical learning and data mining with applications in computer vision and pattern recognition at the University of North Carolina Wilmington (UNCW), for ten weeks during each summer of 2017-2019. UNCW has an institutional commitment to undergraduate education and research through applied learning, and is ideally suited to provide a complete REU experience for the participants. This project is motivated by the shortage of data scientists with analytical skills, recent surge of interests from students, and bringing in awareness of data science career options in academics, industry, and government. The program is designed to involve students in undergraduate research experiences through applied learning and to provide opportunities to develop quantitative and critical thinking skills, and opportunities to improve effective communication skills with professionals from other disciplines. The intellectual focus of the program is to introduce contemporary statistical learning theory and data mining techniques, with applications in analyzing human facial features. Students will be given lectures on the significant impact of computer vision and pattern recognition, challenges in human image analysis, review of fundamentals in mathematics and statistics, image preprocessing, and contemporary statistical learning theory and data mining techniques. The following topics will be discussed in detail: data cleaning and visualization, dimension reduction, regression and classification, software engineering, high performance computing, etc. Research projects are applications of these techniques and emphasize on real world application with interdisciplinary integration. The values of the problem, background, modeling assumptions, statistical theory, numerical solutions, and visualization with computational technology and its interpretation will be well articulated among the participants. Critical and reflective thinking are encouraged, under proper intervenes by mentors, through team-based collaboration and cooperation, group meetings and feedback from weekly presentation and reports.
这个NSF支持的REU网站将为本科生提供统计学习和数据挖掘方面的跨学科研究经验,并在北卡罗来纳州威尔明顿大学(UNCW)的计算机视觉和模式识别中应用,在2017-2019年的每个夏天为期十周。UNCW通过应用学习对本科教育和研究做出了机构承诺,非常适合为参与者提供完整的REU体验。该项目的动机是缺乏具有分析技能的数据科学家,最近学生的兴趣激增,以及在学术界,工业界和政府中引入数据科学职业选择的意识。该项目旨在通过应用学习让学生参与本科研究体验,并提供培养定量和批判性思维技能的机会,以及提高与其他学科专业人士有效沟通技能的机会。 该计划的智力重点是介绍当代统计学习理论和数据挖掘技术,并应用于分析人类面部特征。学生将获得讲座计算机视觉和模式识别的重大影响,在人类图像分析的挑战,在数学和统计学的基础知识,图像预处理,以及当代统计学习理论和数据挖掘技术的审查。以下主题将被详细讨论:数据清洗和可视化,降维,回归和分类,软件工程,高性能计算等研究项目是这些技术的应用,并强调真实的世界的应用与跨学科的整合。问题的价值,背景,建模假设,统计理论,数值解,以及计算技术的可视化及其解释将在参与者之间得到很好的阐述。在导师的适当干预下,通过团队协作与合作、小组会议以及每周演示和报告的反馈,鼓励批判性和反思性思维。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Preliminary Studies on a Large Face Database
- DOI:10.1109/bigdata.2018.8622432
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:B. Yip;G. Bingham;K. Kempfert;J. Fabish;T. Kling;Cuixian Chen;Yishi Wang
- 通讯作者:B. Yip;G. Bingham;K. Kempfert;J. Fabish;T. Kling;Cuixian Chen;Yishi Wang
A comparison study on nonlinear dimension reduction methods with kernel variations: Visualization, optimization and classification
- DOI:10.3233/ida-194486
- 发表时间:2020-01-01
- 期刊:
- 影响因子:1.7
- 作者:Kempfert, Katherine C.;Wang, Yishi;Wong, Samuel W. K.
- 通讯作者:Wong, Samuel W. K.
Gender Effect on Face Recognition for a Large Longitudinal Database
- DOI:10.1109/wifs.2018.8630762
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Caroline Werther;M. Ferguson;K. Park;T. Kling;Cuixian Chen;Yishi Wang
- 通讯作者:Caroline Werther;M. Ferguson;K. Park;T. Kling;Cuixian Chen;Yishi Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cuixian Chen其他文献
Facial feature fusion and model selection for age estimation
年龄估计的面部特征融合和模型选择
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Cuixian Chen;Wankou Yang;Yishi Wang;K. Ricanek;Khoa Luu - 通讯作者:
Khoa Luu
Bayesian model averaging for benchmark dose estimation
- DOI:
10.1007/s10651-014-0285-4 - 发表时间:
2014-04-18 - 期刊:
- 影响因子:1.800
- 作者:
Susan J. Simmons;Cuixian Chen;Xiaosong Li;Yishi Wang;Walter W. Piegorsch;Qijun Fang;Bonnie Hu;G. Eddie Dunn - 通讯作者:
G. Eddie Dunn
Image Pre-processing Using OpenCV Library on MORPH-II Face Database
在 MORPH-II 人脸数据库上使用 OpenCV 库进行图像预处理
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
B. Yip;R. Towner;T. Kling;Cuixian Chen;Yishi Wang - 通讯作者:
Yishi Wang
Fabrication of polyimide composite film with both magnetic and surface conductive properties
兼具磁性和表面导电性能的聚酰亚胺复合薄膜的制备
- DOI:
10.5004/dwt.2011.2899 - 发表时间:
2011 - 期刊:
- 影响因子:1.1
- 作者:
Jiayu Zhan;Dezhen Wu;Cuixian Chen;Ji;F. Pan;Jian Chen;Xia Zhan - 通讯作者:
Xia Zhan
Measurements of Z0 --> bb decays and the semileptonic branching ratio BR (b --> l + X)
Z0 --> bb 衰变和半轻分支比 BR (b --> l X) 的测量
- DOI:
10.1016/0370-2693(91)91347-x - 发表时间:
1991 - 期刊:
- 影响因子:4.4
- 作者:
B. Adeva;O. Adriani;M. Aguilar;H. Akbari;J. Alcaraz;A. Aloisio;G. Alverson;M. Alviggi;Q. An;H. Anderhub;A. Anderson;V. Andreev;T. Angelov;L. Antonov;D. Antreasyan;P. Arce;A. Arefiev;T. Azemoon;T. Aziz;P. Baba;P. Bagnaia;J. Bakken;L. Baksay;R. Ball;S. Banerjee;J. Bao;L. Barone;A. Bay;U. Becker;J. Behrens;S. Beingessner;G. Bencze;J. Berdugo;P. Bergés;B. Bertucci;B. Betev;A. Biland;R. Bizzarri;J. Blaising;P. Blömeke;B. Blumenfeld;G. Bobbink;M. Bocciolini;R. Bock;A. Böhm;B. Borgia;D. Bourilkov;M. Bourquin;D. Boutigny;B. Bouwens;J. Branson;I. Brock;F. Bruyant;C. Buisson;A. Bujak;J. Burger;J. Burq;J. Busenitz;X. Cai;M. Capell;F. Carbonara;P. Cardenal;F. Carminati;A. Cartacci;M. Cerrada;F. Cesaroni;Y. H. Chang;U. Chaturvedi;M. Chemarin;A. Chen;Cuixian Chen;G. Chen;Hong;H. Chen;Min Chen;M. Chen;W. Chen;G. Chiefari;C. Chien;F. Chollet;C. Civinini;I. Clare;R. Clare;H. Cohn;G. Coignet;Nicolas Produit;V. Commichau;G. Conforto;A. Contin;F. Crijns;X. Cui;T. Dai;R. D’Alessandro;R. Asmundis;A. Dégre;K. Deiters;E. Denes;P. Denes;F. Denotaristefani;M. Dhina;D. Dibitonto;M. Diemoz;F. Diez;H. Dimitrov;C. Dionisi;R. Divià;M. Dova;E. Drago;T. Driever;D. Duchesneau;Nicolas Produit;I. Durán;H. Mamouni;A. Engler;F. Eppling;F. Erńe;P. Extermann;R. Fabbretti;G. Faber;M. Fabre;S. Falciano;Q. Fan;S. Fan;O. Fackler;J. Fay;J. Fehlmann;T. Ferguson;G. Fernández;F. Ferroni;H. Fesefeldt;J. Field;F. Filthaut;G. Finocchiaro;P. Fisher;G. Forconi;T. Foreman;K. Freudenreich;W. Friebel;M. Fukushima;M. Gailloud;Y. Galaktionov;E. Gallo;S. Ganguli;P. Garcia;S. Gau;D. Gelé;S. Gentile;M. Glaubman;S. Goldfarb;Z. Gong;E. González;A. Gordeev;P. Göttlicher;D. Goujon;G. Gratta;C. Grinnell;M. Gruenewald;M. Guanziroli;J. Guo;A. Gurtu;H. Gustafson;L. Gutay;H. Haan;A. Hasan;D. Hauschildt;C. He;T. Hebbeker;M. Hebert;G. Herten;U. Herten;A. Hervé;K. Hilgers;H. Hofer;H. Hoorani;L. Hsu;G. Hu;G. Hu;B. Ille;M. Ilyas;V. Innocente;E. Isiksal;H. Janssen;B. Jin;L. Jones;A. Kasser;R. Khan;Y. Kamyshkov;Y. Karyotakis;M. Kaur;S. Khokhar;V. Khoze;M. Kienzle;W. Kinnison;D. Kirkby;W. Kittel;A. Klimentov;A. König;O. Kornadt;V. Koutsenko;R. Kraemer;T. Kramer;V. Krastev;W. Krenz;J. Krizmanic;K. Kumar;V. Kumar;A. Kunin;V. Lalieu;G. Landi;K. Lanius;D. Lanske;S. Lanzano;P. Lebrun;P. Lecomte;P. Lecoq;P. Coultre;D. Lee;I. Leedom;J. Goff;L. Leistam;R. Leiste;M. Lenti;E. Leonardi;J. Lettry;P. Levchenko;X. Leytens;C. Li;H. Li;J. F. Li;L. Li;P. Li;Qiang Li;X. Li;J. Liao;Z. Y. Lin;F. Linde;B. Lindemann;D. Linnhofer;R. Liu;Yueh;W. Lohmann;E. Longo;Y. Lu;J. Lubbers;K. Lübelsmeyer;C. Luci;Nicolas Produit;L. Ludovici;X. Lue;L. Luminari;W. Ma;M. Macdermott;R. Magahiz;M. Maire;P. K. Malhotra;R. Malik;A. Malinin;C. Mañá;D. Mao;Y. Mao;M. Maolinbay;P. Marchesini;A. Marchionni;B. Martin;J. Martin;L. Martínez;F. Marzano;G. Massaro;T. Matsuda;K. Mazumdar;P. McBride;T. Mcmahon;D. McNally;T. Meinholz;M. Merk;L. Merola;M. Meschini;W. Metzger;Y. Mi;G. Mills;Y. Mir;G. Mirabelli;J. Mnich;M. Möller;B. Monteleoni;G. Morand;R. Morand;S. Morganti;N. Moulai;R. Mount;S. Müller;E. Nagy;M. Napolitano;H. Newman;C. Never;M. A. Niaz;L. Niessen;H. Nowak;D. Pandoulas;F. Plášil;G. Passaleva;G. Paternoster;S. Patricelli;Y. Pei;D. Perret;J. Perrier;A. Pevsner;M. Pieri;P. Piroué;V. Plyaskin;M. Pohl;Nicolas Produit;Nicolas Produit;J. Qian;K. Qureshi;R. Raghavan;G. Rahal;P. Razis;K. Read;D. Ren;Z. Ren;S. Reucroft;Ariel Ricker;S. Riemann;O. Rind;C. Rippich;H. A. Rizvi;B. Roe;M. Röhner;S. Röhner;U. Roeser;L. Romero;J. Rose;S. Rosier;R. Rosmalen;P. Rosselet;A. Rubbia;J. Rubio;M. Rubio;W. Ruckstuhl;H. Rykaczewski;M. Sachwitz;J. Salicio;G. Sanders;M. Sarakinos;G. Sartorelli;G. Sauvage;A. Savin;V. Schegelsky;K. Schmiemann;D. Schmitz;P. Schmitz;M. Schneegans;H. Schopper;D. Schotanus;S. Shotkin;H. Schreiber;R. Schulte;S. Schulte;K. Schultze;J. Schütte;J. Schwenke;G. Schwering;C. Sciacca;I. Scott;R. Sehgal;P. Seiler;J. Sens;I. Sheer;D. Shen;V. Shevchenko;S. Shevchenko;X. Shi;K. Shmakov;V. Shoutko;E. Shumilov;N. Smirnov;E. Soderstrom;A. Sopczak;C. Spartiotis;T. Spickermann;B. Spiess;P. Spillantini;R. Starosta;M. Steuer;D. Stickland;F. Sticozzi;W. Stoeffl;H. Stone;Nicolas Produit;B. Stringfellow;K. Sudhakar;G. Sultanov;R. Sumner;L. Sun;H. Suter;R. Sutton;J. Swain;A. Syed;X. Tang;E. Tarkovsky;L. Taylor;C. Timmermans;S. Ting;Nicolas Produit;Y. Tong;F. Tonisch;M. Tonutti;S. Tonwar;J. Toth;G. Trowitzsch;C. Tully;K. Tung;J. Ulbricht;L. Urban;U. Uwer;E. Valente;R. Walle;I. Vetlitsky;G. Viertel;P. Vikas;U. Vikas;Nicolas Produit;H. Vogel;H. Vogt;G. Dardel;I. Vorobiev;A. Vorobyov;A. Vorobyov;L. Vuilleumier;M. Wadhwa;W. Wallraff;C. Wang;G. H. Wang;J. Wang;Q. Wang;Xiaoli Wang;Y. Wang;Z. Wang;A. Weber;J. Weber;R. Weill;T. Wenaus;J. Wenninger;M. White;C. Willmott;F. Wittgenstein;D. Wright;R. Wu;S. Wu;S. Wu;Y. G. Wu;B. Wyslouch;Y. Xie;Y. Xu;Z. Xu;Z. Xue;D. Yan;X. Yan;B. Z. Yang;C. Yang;G. Yang;K. S. Yang;Q. Yang;Z. Q. Yang;C. Ye;J. Ye;Q. Ye;S. Yeh;Z. Yin;J. You;M. Yzerman;C. Zaccardelli;L. Zehnder;P. Zemp;M. Zeng;Y. Zeng;Daowei Zhang;Zhihua Zhang;J. Zhou;R. Zhu;H. Zhuang;A. Zichichi - 通讯作者:
A. Zichichi
Cuixian Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
- 批准号:52172255
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
- 批准号:41340011
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 25.37万 - 项目类别:
Standard Grant
REU Site: Interdisciplinary Micro/nano/additive-manufacturing Program Addressing Challenges Today - Gen 3 (IMPACT-Gen3)
REU 网站:应对当今挑战的跨学科微/纳米/增材制造计划 - 第 3 代 (IMPACT-Gen3)
- 批准号:
2348869 - 财政年份:2024
- 资助金额:
$ 25.37万 - 项目类别:
Standard Grant
REU Site: Interdisciplinary Training for Research and Outreach in Climate Science (IT-ROCS)
REU 网站:气候科学研究和推广跨学科培训 (IT-ROCS)
- 批准号:
2243657 - 财政年份:2024
- 资助金额:
$ 25.37万 - 项目类别:
Standard Grant
REU Site: A Summer Experience for Undergraduates Integrating Research, Education, and Career Development in an Interdisciplinary Environment
REU 网站:本科生在跨学科环境中整合研究、教育和职业发展的暑期体验
- 批准号:
2349329 - 财政年份:2024
- 资助金额:
$ 25.37万 - 项目类别:
Standard Grant
REU Site: Research Experience for Undergraduates: Interdisciplinary Cutting-Edge Research through the Analysis of Global Data
REU 网站:本科生研究经验:通过全球数据分析进行跨学科前沿研究
- 批准号:
2349621 - 财政年份:2024
- 资助金额:
$ 25.37万 - 项目类别:
Continuing Grant
REU Site: Interdisciplinary Biological Engineering and Science Training (I-BEST)
REU 网站:跨学科生物工程和科学培训 (I-BEST)
- 批准号:
2349757 - 财政年份:2024
- 资助金额:
$ 25.37万 - 项目类别:
Standard Grant
REU Site: Interdisciplinary Study of the Politics of Place
REU 网站:地方政治的跨学科研究
- 批准号:
2243249 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Standard Grant
REU Site: Interdisciplinary Program in Multi-scale Biological Networks
REU 站点:多尺度生物网络跨学科项目
- 批准号:
2244041 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Continuing Grant
REU Site: Summer Program for Interdisciplinary Research and Education-Emerging Interface Technologies
REU 网站:跨学科研究和教育新兴接口技术暑期项目
- 批准号:
2244586 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: The Socio-Ecological Role of Greenways in Urban Systems - An Interdisciplinary Approach
合作研究:REU 站点:绿道在城市系统中的社会生态作用 - 跨学科方法
- 批准号:
2150093 - 财政年份:2023
- 资助金额:
$ 25.37万 - 项目类别:
Standard Grant














{{item.name}}会员




