EAGER: A novel mechanism regulating leaf water transport: Reversible collapse of xylem conduits

EAGER:调节叶水运输的新机制:木质部导管的可逆塌陷

基本信息

  • 批准号:
    1659918
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-15 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

This project investigates how plants protect their vascular system from damage due to excessive evaporative loads. The significance of the work arises from the fact that photosynthesis is dependent upon a plant's capacity to transport water from the soil. Thus, understanding how plants protect their water transport system will illuminate constraints on the productivity of agricultural and natural ecosystems. A new finding shows that the terminal water transporting vessels, which are located in leaves and consist of non-living cells, function like a mechanical valve: closing off as the stresses in the system increase and re-opening as the system relaxes. The principle goal of this research is to determine if the valve-like behavior of terminal conduits prevents the stresses in the system from reaching levels that could cause lasting damage to upstream conduits. A second objective is to explore linkages between the rapid stress-induced closure of terminal conduits and the slower closure of stomatal pores in the leaf epidermis. The findings of this research will contribute to the development of crop varieties that are resilient to drought. The project will enhance research mentoring and training of students, as well as provide fundamental insights in plant biology that will be incorporated into teaching and disseminated to the general public.A fundamental issue in plant ecophysiology is how plants protect themselves from cavitation. Challenges to the plant vascular system associated with soil drying occur slowly, such that stomatal closure, root shrinkage, and leaf shedding are effective means of regulating xylem potentials. In contrast, excursions in transpiration rate have the potential to be fast relative to the ability of stomata to close, and thus to expose leaves to potentially damaging water potentials. This is especially the case for angiosperms in which stomatal aperture does not passively track leaf water potential and increases in transpiration lead initially to opening, rather than closing. A recent discovery shows that in the smallest leaf veins, which are the ones in closest contact to the sites of evaporation and thus experience the most negative pressures, the conduits deform (collapse) rather than cavitate and the change in shape is completely (and rapidly) reversible. The goals of this project are to investigate (1) whether the reduction in hydraulic conductivity due to terminal conduit collapse protects upstream xylem from experiencing water potentials that cause cavitation and (2) how collapse contributes to stomatal regulation of transpiration. The study provides a new perspective on the coordination of liquid and vapor phase transport, with implications for both plant productivity and drought response. Greater understanding of the role of xylem mechanical properties may provide new targets for phenotyping crop varieties and understanding plant diversity.
本计画探讨植物如何保护其维管系统免受过度蒸发负荷所造成的伤害。这项工作的意义在于光合作用依赖于植物从土壤中运输水分的能力。因此,了解植物如何保护其水运输系统将阐明农业和自然生态系统生产力的制约因素。一项新的发现表明,位于叶片中并由非活细胞组成的终端水运输容器的功能就像一个机械阀门:随着系统中压力的增加而关闭,随着系统的放松而重新打开。本研究的主要目标是确定终端管道的阀状行为是否可以防止系统中的应力达到可能对上游管道造成持久损坏的水平。第二个目标是探索快速的压力诱导的终端管道关闭和叶表皮气孔关闭较慢之间的联系。这项研究的结果将有助于开发耐旱的作物品种。该项目将加强对学生的研究指导和培训,并提供植物生物学的基本见解,这些见解将纳入教学并向公众传播。植物生态生理学的一个基本问题是植物如何保护自己免受空化。与土壤干燥相关的植物维管系统的挑战缓慢发生,使得气孔关闭、根收缩和叶脱落是调节木质部潜力的有效手段。与此相反,蒸腾速率的波动有可能是快速相对于气孔关闭的能力,从而使叶片暴露于潜在的破坏性水势。这是特别是被子植物的情况下,气孔开度并不被动跟踪叶水势和增加蒸腾导致最初打开,而不是关闭。最近的一项发现表明,在最小的叶脉中,这些叶脉与蒸发部位接触最紧密,因此经历了最大的负压,导管变形(塌陷)而不是空化,形状的变化是完全(快速)可逆的。本项目的目标是调查(1)是否减少水力传导性,由于终端管道崩溃保护上游木质部经历水势,造成空化和(2)如何崩溃有助于气孔调节蒸腾。这项研究提供了一个新的视角,协调的液体和蒸汽相运输,与植物生产力和干旱反应的影响。对木质部力学性质作用的进一步了解可能为作物品种的表型分析和了解植物多样性提供新的目标。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visualizing Embolism Propagation in Gas-Injected Leaves
  • DOI:
    10.1104/pp.18.01284
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Hochberg, Uri;Ponomarenko, Alexandre;Holbrook, N. Michele
  • 通讯作者:
    Holbrook, N. Michele
Advanced vascular function discovered in a widespread moss
  • DOI:
    10.1038/s41477-020-0602-x
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    18
  • 作者:
    Brodribb, T. J.;Carriqui, M.;Holbrook, N. M.
  • 通讯作者:
    Holbrook, N. M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noel Holbrook其他文献

Noel Holbrook的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noel Holbrook', 18)}}的其他基金

Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Physiology of Long Distance Assimilate Transport
合作研究:长距离同化物运输的生理学
  • 批准号:
    1456845
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Meeting: Vascular Transport in Plants - Research Frontiers and Priorities (Washington, DC March 2015)
合作研究:会议:植物中的血管运输 - 研究前沿和优先事项(华盛顿特区,2015 年 3 月)
  • 批准号:
    1445226
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Testing the Munch Hypothesis: Hydraulics of Phloem Transport in Vines and Trees
合作研究:检验蒙克假说:藤蔓和树木韧皮部运输的水力学
  • 批准号:
    1021779
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Dissertation Research: Plant-Mediated Effects of Global Climate Change on Insect Herbivory
论文研究:全球气候变化对昆虫草食性的植物介导影响
  • 批准号:
    0407716
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: The Role of Programmed Cell Death in Heartwood Formation
论文研究:程序性细胞死亡在心材形成中的作用
  • 批准号:
    0308801
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
IGERT: Integrated Training Program in Biomechanics
IGERT:生物力学综合培训计划
  • 批准号:
    0221682
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Hydraulic Limits to Photosynthetic Performance in Tropical Dry Forest Trees
热带干燥森林树木光合性能的水力限制
  • 批准号:
    0212792
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Conference on Environmental and Physiological Integration of Long-Distance Transport Processes in Plants, Petersham, Massachusetts, October, 2002
植物长距离运输过程的环境和生理整合会议,Petersham,马萨诸塞州,2002 年 10 月
  • 批准号:
    0211683
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
An Upgraded Scanning Electron Microscope for Organismic and Evolutionary Biology
用于有机体和进化生物学的升级版扫描电子显微镜
  • 批准号:
    0099916
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
  • 批准号:
    2305609
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship Award
A novel mechanism of menopause-induced endometrial cancer that develops through functional loss of the helicase family
更年期诱发子宫内膜癌的新机制是通过解旋酶家族功能丧失而发生的
  • 批准号:
    24K19688
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
CAREER: Decipher the Mechanism of High-performance Novel Memristors by Phase-field Simulation
职业:通过相场仿真解读高性能新型忆阻器的机制
  • 批准号:
    2340595
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Novel mechanism of host manipulation by Wolbachia endosymbiont
沃尔巴克氏菌内共生体操纵宿主的新机制
  • 批准号:
    23H02229
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Identification of novel therapeutic target and mechanism for PARP inhibitor combination therapy
PARP抑制剂联合治疗的新治疗靶点和机制的鉴定
  • 批准号:
    23K08100
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a novel treatment targeting the immunosuppressive mechanism of MDSC for canine malignant melanoma
针对MDSC免疫抑制机制开发犬恶性黑色素瘤新疗法
  • 批准号:
    23K05561
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the mechanism of acquired resistance to novel TKIs for EGFR/HER2 exon 20 insertion models
阐明 EGFR/HER2 外显子 20 插入模型对新型 TKI 获得性耐药的机制
  • 批准号:
    23K15569
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the precise mechanism of heart failure prevention by beta-catenin inhibition enabling the future development of a novel class of medicine
阐明β-连环蛋白抑制预防心力衰竭的精确机制,有助于未来开发一类新型药物
  • 批准号:
    23K15167
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel ventricular arrhythmias mechanism in ischemic heart failure focusing on neuropeptide Y
以神经肽Y为重点的缺血性心力衰竭室性心律失常新机制
  • 批准号:
    23K15119
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了