CAREER: Equivariant topological field theories and higher cluster categories

职业:等变拓扑场论和更高的簇类别

基本信息

  • 批准号:
    1659931
  • 负责人:
  • 金额:
    $ 36.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This proposal is concerned with several extensions and applications of the theory of homotopical higher categories. Our first foundational objective is to develop equivariant versions of the many known models for homotopical higher categories and to establish equivalences between them. Our first proposed application is the development of homotopical approaches to equivariant extended topological field theories. The second application is the development of topological cluster categories arising from surfaces; extending to higher dimensions should allow for the development of new invariants of higher-dimensional manifolds analogous to ones for surfaces. This second application should also inform the first, with higher-dimensional cluster categories giving new information about topological field theories. The third application is concerned with connections between Hall algebras and algebraic K-theory. In one direction, constructions of homotopical Hall algebras are expected to give rise to K-theory spectra which should give new information about Hall algebras, especially those related to quantum groups. In another, variations of Hall algebra constructions have corresponding variants of algebraic K-theory which are worthy of further investigation. Broadly speaking, this proposal is concerned with incorporating algebraic information into categorical and topological structures which are currently being used in a wide range of kinds of mathematics. We then seek to apply these enhanced structures in mathematical physics, manifold theory, and representation theory. The educational component of this proposal consists of a series of four summer workshops for mathematics majors who are in the process of transferring to UC Riverside. The goal is to help twenty participants each year to make the transition to upper-level mathematics via introduction to proof techniques, more theoretical concepts, and a broad overview of the range of topics in higher-level mathematics courses. Students will be provided with some follow-up mentoring activities, including opportunities for participating in undergraduate research.
这个建议涉及同伦高范畴理论的几个推广和应用。 我们的第一个基本目标是开发同伦更高类别的许多已知模型的等变版本,并建立它们之间的等价关系。 我们提出的第一个应用是同伦方法的发展等变扩展拓扑场论。 第二个应用是发展的拓扑集群类别所产生的表面;扩展到更高的维度应允许发展新的不变量的高维流形类似的表面。 这第二个应用程序也应该通知第一个,与高维集群类别提供新的信息拓扑场论。 第三个应用是关于霍尔代数和代数K理论之间的联系。 在一个方向上,同伦Hall代数的构造有望产生K-理论谱,这将提供有关Hall代数的新信息,特别是与量子群有关的信息。 另一方面,Hall代数结构的变体有相应的代数K-理论的变体,值得进一步研究。 广义地说,这一建议涉及到将代数信息纳入范畴和拓扑结构,目前正在使用的各种数学。 然后,我们试图将这些增强的结构应用于数学物理,流形理论和表示论。 该提案的教育部分包括一系列的四个夏季研讨会的数学专业谁是在转移到加州大学滨江的过程中。 我们的目标是帮助每年20名参与者通过介绍证明技术,更多的理论概念以及对高级数学课程主题范围的广泛概述,过渡到高级数学。 学生将提供一些后续辅导活动,包括参与本科研究的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Bergner其他文献

Julia Bergner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Bergner', 18)}}的其他基金

Homotopical Algebraic Structures in Algebraic K-theory and Functor Calculus
代数 K 理论和函子微积分中的同伦代数结构
  • 批准号:
    1906281
  • 财政年份:
    2019
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Continuing Grant
CAREER: Equivariant topological field theories and higher cluster categories
职业:等变拓扑场论和更高的簇类别
  • 批准号:
    1352298
  • 财政年份:
    2014
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Continuing Grant
Homotopical Approaches to Algebraic Structures
代数结构的同伦方法
  • 批准号:
    1105766
  • 财政年份:
    2011
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Standard Grant
Algebraic applications of the homotopy theory of homotopy theories
同伦理论的代数应用
  • 批准号:
    0805951
  • 财政年份:
    2008
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Standard Grant

相似海外基金

Algebraic K-Theory, Topological Hochschild Homology, and Equivariant Homotopy Theory
代数 K 理论、拓扑 Hochschild 同调和等变同伦理论
  • 批准号:
    2104233
  • 财政年份:
    2021
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Continuing Grant
Topological and equivariant rigidity in the presence of lower curvature bounds
存在曲率下限时的拓扑刚度和等变刚度
  • 批准号:
    339994903
  • 财政年份:
    2017
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Priority Programmes
CAREER: Equivariant topological field theories and higher cluster categories
职业:等变拓扑场论和更高的簇类别
  • 批准号:
    1352298
  • 财政年份:
    2014
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Continuing Grant
Representation theoretic and topological research on the equivariant K-theory of compact Lie groups with the adjoint action
具有伴随作用的紧李群等变K理论的表示论和拓扑研究
  • 批准号:
    19540074
  • 财政年份:
    2007
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Equivariant topological methods in nonlinear problems with group symmetries
群对称非线性问题的等变拓扑方法
  • 批准号:
    41779-1999
  • 财政年份:
    2002
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Discovery Grants Program - Individual
Equivariant topological methods in nonlinear problems with group symmetries
群对称非线性问题的等变拓扑方法
  • 批准号:
    41779-1999
  • 财政年份:
    2001
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Discovery Grants Program - Individual
Equivariant topological methods in nonlinear problems with group symmetries
群对称非线性问题的等变拓扑方法
  • 批准号:
    41779-1999
  • 财政年份:
    2000
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Discovery Grants Program - Individual
Equivariant topological methods in nonlinear problems with group symmetries
群对称非线性问题的等变拓扑方法
  • 批准号:
    41779-1999
  • 财政年份:
    1999
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Discovery Grants Program - Individual
Equivariant topological methods in nonlinear analysis
非线性分析中的等变拓扑方法
  • 批准号:
    41779-1995
  • 财政年份:
    1998
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Discovery Grants Program - Individual
Equivariant topological methods in nonlinear analysis
非线性分析中的等变拓扑方法
  • 批准号:
    41779-1995
  • 财政年份:
    1997
  • 资助金额:
    $ 36.05万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了