Characterization of Hydrodynamics and Behavior of Viscoelasticity at the Nanoscale
纳米尺度的流体动力学和粘弹性行为表征
基本信息
- 批准号:1660448
- 负责人:
- 金额:$ 33.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to measure physical properties of materials at very small scales is key to advancing scientific research and technological progress. Measurements that occur at the nanoscale, where the physical dimensions involved are on the order of one billionth of a meter, are of particular importance. The atomic force microscope (AFM) is one of the primary tools for making quantitative measurements of material properties at the nanoscale. However, there exist many physical phenomena at the nanoscale that prevent accurate quantitative measurements from being made, especially in liquid environments. This project aims to understand and fully characterize two such phenomena: fluid forces that arise at the nanoscale when the AFM is operated in liquid environments (hydrodynamics) and the underlying principles that govern the behavior of the material being interrogated (viscoelasticity). This project will enable quantitative measurements of material properties at the nanoscale in liquid environments on a variety of inorganic and biological materials. This will enable new and cutting-edge research in areas such as medicine, biology, and materials engineering. In addition, the project's educational plan will develop a hands-on, interactive, and portable learning platform that will expose K-12, undergraduate, and graduate students to AFM and the scientific principles used in its operation. The educational plan will engender further interest and retention in the STEM fields. The primary objective of this project is to understand the effect that complex sample viscoelasticity and hydrodynamic forces at the nanoscale have on the resonant behavior of measurement systems by developing mathematical and numerical models that capture and quantify these phenomena. These effects can be addressed through the lens of contact resonance (CR) spectroscopy AFM. The CR spectroscopy system is an ideal measurement platform to understand these phenomena because it is well understood in the absence of these effects and has the ability to interrogate both the hydrodynamic and viscoelastic parameter spaces of interest. The focus of this project is on accurately predicting the three-dimensional fluid-structure interactions present in CR spectroscopy systems, establishing material models for CR spectroscopy to account for biological and non-classical viscoelastic materials, and experimentally validating the fluid-structure interaction and viscoelastic models. The success of the project will enable accurate contact resonance based quantitative nanomechanical characterization of biological materials in liquid environments, which in turn will facilitate research in several key areas such as study of biomaterials and bio-polymers with applications to the medical community, study of nanomechanical structural changes in osteoarthritic bones, and study of dentin and tooth enamel.
在非常小的尺度上测量材料物理特性的能力是推进科学研究和技术进步的关键。 在纳米尺度下进行的测量特别重要,其中所涉及的物理尺寸是十亿分之一米的数量级。 原子力显微镜(AFM)是在纳米尺度上对材料性质进行定量测量的主要工具之一。 然而,在纳米尺度上存在许多物理现象,这使得无法进行精确的定量测量,特别是在液体环境中。 该项目旨在了解和充分表征两种现象:当AFM在液体环境中操作时在纳米级产生的流体力(流体动力学)和管理被询问材料行为的基本原理(粘弹性)。 该项目将能够在液体环境中对各种无机和生物材料进行纳米级材料特性的定量测量。 这将使新的和前沿的研究领域,如医学,生物学和材料工程。 此外,该项目的教育计划将开发一个动手,互动和便携式学习平台,将暴露K-12,本科生和研究生的AFM和其操作中使用的科学原理。 该教育计划将进一步激发人们对STEM领域的兴趣和保留。 该项目的主要目标是通过开发捕获和量化这些现象的数学和数值模型,了解纳米级复杂样品粘弹性和水动力对测量系统谐振行为的影响。 这些影响可以通过接触共振(CR)光谱AFM的透镜来解决。 CR光谱系统是理解这些现象的理想测量平台,因为在没有这些效应的情况下它可以很好地理解,并且能够询问感兴趣的流体动力学和粘弹参数空间。 该项目的重点是准确预测CR光谱系统中存在的三维流体-结构相互作用,建立CR光谱的材料模型以考虑生物和非经典粘弹性材料,并通过实验验证流体-结构相互作用和粘弹性模型。 该项目的成功将使生物材料在液体环境中的基于接触共振的定量纳米力学表征变得准确,这反过来又将促进几个关键领域的研究,例如应用于医学界的生物材料和生物聚合物的研究,骨关节炎骨骼中纳米力学结构变化的研究,以及牙本质和牙釉质的研究。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Novel Plate-Like Sensor Utilizing Curvature-Based Stiffening for Nanometrology Applications
一种利用基于曲率的加固的新型板状传感器,用于纳米计量应用
- DOI:10.1115/dscc2020-3301
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Shihab, Rafiul;Jalil, Tasmirul;Gulsacan, Burak;Aureli, Matteo;Tung, Ryan C.
- 通讯作者:Tung, Ryan C.
Contact Resonance Atomic Force Microscopy Using Long, Massive Tips
- DOI:10.3390/s19224990
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Tony Jaquez-Moreno;M. Aureli;R. Tung
- 通讯作者:Tony Jaquez-Moreno;M. Aureli;R. Tung
Numerical verification of the hydrodynamic reconstruction method for contact resonance atomic force microscopy
接触共振原子力显微镜流体动力学重建方法的数值验证
- DOI:10.1063/1.5044651
- 发表时间:2018
- 期刊:
- 影响因子:1.6
- 作者:Shihab, Rafiul;Tung, Ryan C.
- 通讯作者:Tung, Ryan C.
Plate geometries for contact resonance atomic force microscopy: Modeling, optimization, and verification
- DOI:10.1063/1.5038727
- 发表时间:2018-07-07
- 期刊:
- 影响因子:3.2
- 作者:Aureli, Matteo;Ahsan, Syed N.;Tung, Ryan C.
- 通讯作者:Tung, Ryan C.
Sensor Egregium—An Atomic Force Microscope Sensor for Continuously Variable Resonance Amplification
- DOI:10.1115/1.4050274
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:R. Shihab;Tasmirul Jalil;Burak Gulsacan;M. Aureli;R. Tung
- 通讯作者:R. Shihab;Tasmirul Jalil;Burak Gulsacan;M. Aureli;R. Tung
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Tung其他文献
Ryan Tung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Tung', 18)}}的其他基金
Determination of the Key Parameters Causing Unexplained Dynamic Phenomena in High-Speed Atomic Force Microscopy
高速原子力显微镜中引起无法解释的动态现象的关键参数的确定
- 批准号:
1934772 - 财政年份:2020
- 资助金额:
$ 33.22万 - 项目类别:
Standard Grant
相似国自然基金
基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
- 批准号:51078108
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Hydrodynamics of quantum fluids
量子流体的流体动力学
- 批准号:
DP240101033 - 财政年份:2024
- 资助金额:
$ 33.22万 - 项目类别:
Discovery Projects
Elucidating Hydrodynamics at Confined Interfaces for Artificial Active Fluidics and Beyond
阐明人工主动流体学及其他领域的受限界面处的流体动力学
- 批准号:
MR/X03660X/1 - 财政年份:2024
- 资助金额:
$ 33.22万 - 项目类别:
Fellowship
CAREER: Collective hydrodynamics within viscous interfaces: activity and assembly in membranes and monolayers
职业:粘性界面内的集体流体动力学:膜和单层中的活性和组装
- 批准号:
2340415 - 财政年份:2024
- 资助金额:
$ 33.22万 - 项目类别:
Continuing Grant
The development of new Smoothed Particle Hydrodynamics algorithm for dynamic fracture
用于动态断裂的新平滑粒子流体动力学算法的开发
- 批准号:
2894121 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Studentship
RII Track-4:NSF: Enhanced Multiscale Approaches for Simulations of Multicomponent Fluids with Complex Interfaces using Fluctuating Hydrodynamics
RII Track-4:NSF:使用脉动流体动力学模拟具有复杂界面的多组分流体的增强多尺度方法
- 批准号:
2346036 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Standard Grant
Time-Dependent Hydrodynamics in Uniform Fermi Gases
均匀费米气体中的瞬态流体动力学
- 批准号:
2307107 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Continuing Grant
Clarification of Energy Mechanisms in Supercritical Accretion Flows on to Neutron Stars through Hydrodynamics and Radiative Transfer Simulations
通过流体动力学和辐射传输模拟阐明中子星超临界吸积流的能量机制
- 批准号:
22KJ0368 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
NSF-BSF: The Evolution of Hydrodynamics, Mechanics, & Prey Capture in the Feeding of Misfit Fish
NSF-BSF:流体动力学、力学、
- 批准号:
2326484 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Continuing Grant
Advanced hydrodynamics for next generation of offshore infrastructure
下一代海上基础设施的先进流体动力学
- 批准号:
FT230100109 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
ARC Future Fellowships
The interaction of waves with seaweed farms: wave attenuation and intra-farm hydrodynamics
波浪与海藻养殖场的相互作用:波浪衰减和养殖场内的流体动力学
- 批准号:
2888992 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Studentship