Determination of the Key Parameters Causing Unexplained Dynamic Phenomena in High-Speed Atomic Force Microscopy
高速原子力显微镜中引起无法解释的动态现象的关键参数的确定
基本信息
- 批准号:1934772
- 负责人:
- 金额:$ 35.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to accurately and rapidly measure the physical properties of materials at extremely small length scales is key to advancing scientific research and technological progress. The atomic force microscope, in which a micrometer sized cantilevered beam is used to physically probe a material of interest, is one of the primary tools for making quantitative measurements of material properties at scales on the order of one billionth of a meter. However, when conducting atomic force microscope measurements at high scanning speeds, unexplained phenomena present themselves. These unexplained phenomena impede accurate scientific measurement. There is currently a lack of experimental data to properly characterize and model these unexplained phenomena. A set of well-designed experiments and numerical simulations that test the suspected variables related to these scanning speed phenomena will be conducted. Highly quantitative and rapid measurements, such as the real-time evolution of the mechanical properties of viruses exposed to various stimuli or nano-scale corrosion processes occurring in real-time, will be enabled by this work and will allow new and cutting-edge research in areas such as medicine, biology, and materials engineering, thus, benefiting the US economy and the progress of science. In addition, the project's educational plan will develop a hands-on, interactive, and portable learning platform that will expose K-12, undergraduate, and graduate students to atomic force microscopy and the scientific principles used in its operation. The educational plan will engender further interest and retention in the Science, Technology, Engineering, and Mathematics fields.The project objective is to determine the key parameters that cause observed scan velocity related phenomena in contact mode high-speed atomic force microscopy and to develop mathematical models that will predict this behavior. The project objective will be obtained by pursuing the following specific tasks: 1) Systematically determine the primary variables causing the scan velocity phenomena via a suite of experiments that control the suspected sources of the phenomena such as relative humidity, scan speed, scan angle, sample composition, fluid environment, and AFM tip radii. The output data will also be used to determine the functional form of predictive models used to characterize the scan velocity related phenomena. 2) Perform computational fluid-structure interaction simulations to investigate the effect of scan velocity on the hydrodynamic forces acting on the bulk microcantilever. The large scan velocities used in high-speed atomic force microscopy domains will affect the hydrodynamic forces acting on the microcantilever, which to date, are calculated under the assumption that the surrounding fluid is quiescent. These fluid-structure interaction simulations will be used to determine a mathematical model to predict the hydrodynamic forces on the cantilever system due to fluid velocity effects. This research will allow for accurate contact mode high-speed atomic force microscopy measurements that extend beyond topographical imaging, across a wide range of scan velocities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在极小长度尺度上准确、快速测量材料物理性质的能力是推进科学研究和技术进步的关键。原子力显微镜是在十亿分之一米的尺度上对材料特性进行定量测量的主要工具之一。在原子力显微镜中,一个微米大小的悬臂梁被用来物理探测感兴趣的材料。然而,当在高扫描速度下进行原子力显微镜测量时,无法解释的现象就会出现。这些无法解释的现象妨碍了精确的科学测量。目前缺乏实验数据来适当地描述和模拟这些无法解释的现象。将进行一组精心设计的实验和数值模拟,以测试与这些扫描速度现象相关的可疑变量。这项工作将使高度定量和快速的测量成为可能,例如暴露于各种刺激或实时发生的纳米级腐蚀过程的病毒的机械特性的实时演变,并将允许在医学,生物学和材料工程等领域进行新的尖端研究,从而有利于美国经济和科学进步。此外,该项目的教育计划将开发一个动手,互动和便携式学习平台,让K-12,本科生和研究生了解原子力显微镜及其操作中使用的科学原理。该教育计划将进一步激发学生对科学、技术、工程和数学领域的兴趣和兴趣。该项目的目标是确定在接触模式高速原子力显微镜中引起观察到的扫描速度相关现象的关键参数,并建立数学模型来预测这种行为。项目目标将通过以下具体任务来实现:1)通过一系列实验系统地确定导致扫描速度现象的主要变量,这些实验控制了这些现象的可疑来源,如相对湿度、扫描速度、扫描角度、样品成分、流体环境和AFM尖端半径。输出数据还将用于确定用于表征扫描速度相关现象的预测模型的功能形式。2)进行流固耦合计算模拟,研究扫描速度对作用于体微悬臂梁的水动力的影响。高速原子力显微镜领域中使用的大扫描速度将影响作用在微悬臂上的水动力,迄今为止,这些力是在假设周围流体是静止的情况下计算的。这些流体-结构相互作用模拟将用于确定数学模型,以预测由于流体速度效应而对悬臂系统产生的水动力。这项研究将允许精确的接触模式高速原子力显微镜测量,超越地形成像,跨越广泛的扫描速度范围。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental validation of contact resonance AFM using long massive tips
使用长块头的接触共振 AFM 的实验验证
- DOI:10.1088/1361-6528/acda37
- 发表时间:2023
- 期刊:
- 影响因子:3.5
- 作者:Zimron-Politi, Nadav;Tung, Ryan C
- 通讯作者:Tung, Ryan C
Contact resonance atomic force microscopy using long elastic tips
- DOI:10.1088/1361-6528/ad0bd2
- 发表时间:2024-02-12
- 期刊:
- 影响因子:3.5
- 作者:Zimron-Politi,Nadav;Tung,Ryan C.
- 通讯作者:Tung,Ryan C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Tung其他文献
Ryan Tung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Tung', 18)}}的其他基金
Characterization of Hydrodynamics and Behavior of Viscoelasticity at the Nanoscale
纳米尺度的流体动力学和粘弹性行为表征
- 批准号:
1660448 - 财政年份:2017
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
相似国自然基金
βB1 蛋白 L116P 突变通过 Greek key II 的稳定
性介导晶状体蛋白异常聚集的作用与机制研
究
- 批准号:Q24H120009
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
βB晶状体蛋白第四Greek Key基序调控晶状体蛋白稳态的分子机制
- 批准号:LY23H120004
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
“Lock and Key”策略构建二元共混体系中粒子刷相互作用新模型研究
- 批准号:51973001
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Improving Evaluations of STEM Programs: An Empirical Investigation of Key Design Parameters
改进 STEM 项目的评估:关键设计参数的实证研究
- 批准号:
2000388 - 财政年份:2020
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
RAPID: Mathematical Models for Understanding Key Epidemiological Parameters and Transmission of SARS-CoV-2
RAPID:了解 SARS-CoV-2 关键流行病学参数和传播的数学模型
- 批准号:
2031756 - 财政年份:2020
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
EVALUATION OF THE INTERRELATION BETWEEN KEY PROCESS PARAMETERS AND PRODUCT/MATERIAL PROPERTIES IN HYBRID ADDITIVE-SUBTRACTIVE PROCESS CHAINS
评估混合增减工艺链中关键工艺参数与产品/材料特性之间的相互关系
- 批准号:
2278921 - 财政年份:2019
- 资助金额:
$ 35.67万 - 项目类别:
Studentship
Experimental determination of key operating parameters of li-ion batteries for performance enhancement of Electra's advanced battery management system
实验确定锂离子电池的关键工作参数,以增强 Electra 先进电池管理系统的性能
- 批准号:
528536-2018 - 财政年份:2018
- 资助金额:
$ 35.67万 - 项目类别:
Engage Grants Program
PReventing the Emergence of CPE In hospitalS: understanding key Epidemiologic parameters (PRECISE)
预防医院中 CPE 的出现:了解关键流行病学参数 (PRECISE)
- 批准号:
389906 - 财政年份:2018
- 资助金额:
$ 35.67万 - 项目类别:
Operating Grants
Characterization of key system parameters of mechanistic dermal PBPK models in various skin diseases and performance verification of the model using observed local and systemic concentrations
表征各种皮肤疾病中机械性真皮 PBPK 模型的关键系统参数,并使用观察到的局部和全身浓度验证模型的性能
- 批准号:
9770847 - 财政年份:2018
- 资助金额:
$ 35.67万 - 项目类别:
Identification of key parameters in adjuvant efficiency
佐剂效率关键参数的确定
- 批准号:
507493-2017 - 财政年份:2017
- 资助金额:
$ 35.67万 - 项目类别:
Engage Grants Program
Well-defined, modifiable hydrogel networks to unravel key parameters that control stem cell fate in the bone marrow.
明确的、可修改的水凝胶网络可以揭示控制骨髓中干细胞命运的关键参数。
- 批准号:
1763795 - 财政年份:2016
- 资助金额:
$ 35.67万 - 项目类别:
Studentship
Towards operational monitoring of key climate parameters from synthetic aperture radar
利用合成孔径雷达对关键气候参数进行业务监测
- 批准号:
FS100100040 - 财政年份:2011
- 资助金额:
$ 35.67万 - 项目类别:
Super Science Fellowships
Identification of Key Loading Parameters for Bone Functional Adaptation
骨功能适应关键负载参数的识别
- 批准号:
8256517 - 财政年份:2011
- 资助金额:
$ 35.67万 - 项目类别: